STADIUM Software Overview

Durability and Service Life of Concrete Structures

Eric Samson
Cementitious Barriers Partnership
SIMCO Technologies Inc.

August 2014

Who we are

SIMCO is a specialized engineering firm entirely dedicated to the durability of concrete structures.

Who we are

Who we are

STADIUM® models the transport of chemical species in **cementitious materials** resulting from exchanges at the material/environment interface.

- The U.S. Department of Defense recognizes STADIUM® as the only accurate numerical solution for the prediction of longterm behavior of reinforced concrete structures exposed to marine environments.
- Since 2010, STADIUM® is specified in the Unified Facilities Guide Specifications (UFGS).
- It is used to select concrete mixtures for marine applications, based on specified performance targets.

The model is divided in 2 main modules:

- The transport module makes the species move during one time step,
- The chemistry module simulates the reactions between species in the pores and the hydrated paste.

- Coupled species diffusion
- Moisture/Temperature coupling
- Transport of main species
- Feedback effect
- Time-dependent transport properties (hydration)
- Time-dependent B.C.

- Local Equilibrium Assumption
- Dissolution/precipitation
- Solid solutions
- Chemical/Pitzer database in separate text file
- Effect of temperature on chemistry

STADIUM Lab Modules

Characterization of concrete mixtures

Evaluation of transport properties – Input to STADIUM®

Drying test

Migration test

STADIUM Lab Modules

The test methods are part of Unified Facilities Guide Specifications (UFGS) 03 31 29 (February 2010) test protocol

- US Navy (NAVFAC ESC)
- USACE
- USAF
- NASA

STADIUM Input

Transport equations

Mechanisms	Properties	Lab tests
Electrodiffusion of species	Diffusion coefficient	Migration test
	Porosity	ASTM C642
Moisture transport (liquid & vapor)	Permeability	Drying test
	Moisture isotherm	Drying test
Heat conduction	Thermal conductivity	Estimated
	Heat capacity	Estimated

STADIUM Input

Chemistry

INPUT TO CHEMISTRY MODULE

- Mix composition
- Cement chemistry
- SCMs chemistry
- Chemistry database
- Pitzer parameters

CALCULATED PARAMETERS

- Hydrated cement paste composition
- Pore solution composition

STADIUM Input

Time-dependent boundary conditions

After a one-year cycle, the model goes back to the beginning of the year. The cycle is repeated.

Using STADIUM

Time to initiate corrosion

Maintenance options

Simulating past exposure sequences

Simulating past exposure sequences

Simulating past exposure sequences

Case Studies

Kentucky University – Concrete Mix Design

Kilo Wharf Extension | US NAVY, GUAM

Case Studies

Panama Canal – Third Set of Locks

Probabilistic approach

A probabilistic engine can handle calculations considering the distribution of key parameters:

- Transport properties,
- Concrete cover,
- Exposure conditions,
- Corrosion threshold.

Probabilistic approach

Probabilistic approach

Asset Management

KMS - Kademuren Modellering Systeem

Asset Management

Asset Management

