Performance Assessment Challenges and Model Abstraction

Greg Flach
Savannah River National Laboratory

June 19, 2012 Richland WA

PA Challenges: Long Time Scales

Disposal of long-lived radionuclides requires effective containment for 1,000 to 10,000 years or more, e.g.,

- Tank closures, saltstone
- Solid waste disposal
- D&D

However assumed performance beyond ~500 years requires explicit justification, e.g., NUREG-1573

- "Engineered barriers can . . . be assumed to have physically degraded after 500 years"
- "For timeframes longer than 500 years . . . credit . . . may be taken for the long-term provided the applicant provides suitable information and justification"

PA Challenges: Engineered Materials

Engineered barriers and waste forms introduce significant modeling challenges:

- Reactive chemistry (grout and concrete)
- Evolution of physical and chemical properties over long time periods
- Highly contrasting material properties and fine geometric features
 (liners and fast flow paths)

PA Challenges: Uncertainties

Significant uncertainties

- Scenarios / conceptual models
- Closure state
- Exposure conditions
- Material properties and evolution

Features Events

Processes

Uncertainties must be reduced and/or managed

- Experimental measurement
- Field validation
- Sensitivity analysis and uncertainty quantification
- Compliance margin

PA Challenges: Ambiguous Objectives

Period of Performance?

- DOE Order 435.1 \rightarrow 1,000 yrs
- NRC guidance \rightarrow 10,000 yrs

"Reasonable" expectation / assurance?

- Subjective criterion
- Role of behavior beyond period of performance

PA Challenges: Computing Demands

Savannah River H-Tank Farm example

Vadose zone flow

- $4000 \text{ simulations} = 5 \text{ scenarios} \cdot 20 \text{ tanks/srcs} \cdot 40 \text{ flow periods}$

Vadose zone transport

- Base case: $3200 \text{ runs} = 40 \text{ tanks/srcs} \cdot 80 \text{ species}$
- Alternative cases: $1000 \text{ runs} = 4 \text{ cases} \cdot 25 \text{ srcs} \cdot 10 \text{ species}$
- Sensitivity cases: $1000 \text{ runs} = 10 \text{ scenarios} \cdot 10 \text{ srcs} \cdot 10 \text{ species}$
- Total: 5200 simulations

Aquifer transport

5200 simulations

Total = 14,400 simulations

PA Challenges: Schedule Constraints

Performance Assessment

Months to one year

Revisions

Weeks to months

Comment response

Days to weeks

PA Challenges: Multiple Models

Higher fidelity models for separate effects/phenomena and/or very-near field

- Cementitious material degradation
- Corrosion
- Reactive chemistry

System models for deterministic and limited sensitivity analysis

- Vadose zone / near-field
- Aquifer / far-field

Abstracted system model for sensitivity analysis and uncertainty quantification

PA Challenges: Model Abstraction

Model abstraction required for efficiency

- Dimensionality: 3D → 2D → 1D
- Properties → fcn(time)
- Etc.

PA Challenges: Model Integration

Model integration

- Phenomena
- Regions
- Varying fidelity / abstraction
- Benchmarking

CBP Products and PA Process

Higher fidelity models for simulating transport and degradation phenomena in cementitious materials

- Primary, secondary, and trace species transport
- External Sulfate Attack (~FY11)
- Carbonation (~FY12)
- Fractured materials (~FY13)

Experimental data

- Property measurements
- Validation data

Probabilistic framework

Integration with GoldSim (www.goldsim.com)

CBP Engagement with PA Process

Conceptual engagement through

- Source-term or boundary condition in near-field
 - for example, radionuclide release from waste form or through barrier
- Material property variations in space and time
 - for example, permeability
- Development of abstracted models

Performance Assessment CBP Custom DLL THAMES ORCHESTRA STADIUM

Software engagement through

- GoldSim interface
- Data files (for example, species flux as a function of time)

Performance Assessment Applications of CBP Toolbox Version 1.0 and Prototype Version 2.0

Greg Flach
Savannah River National Laboratory

August 26, 2014 Richland WA

2012 Hanford Workshop Feedback

Participant feedback in reference to CBP Software Toolbox version 1.0

"As tools mature, it would be beneficial to go through a real scenario on how it was used in DOE complex"

Anonymous

General Work Scope and Progress

Phenomena	FY2010	FY2011	FY2012	FY2013	FY14 to-date
External Sulfate Attack & Primary Constituent Leaching	Priority need	LXO and Stadium development	CBP Toolbox Version 1.0; workshops	Contractor deployment / funding	CBP Toolbox Version 2.0; DOE-SR/DOE- ORP user
Carbonation	Priority need	Initial LXO development	CBP Toolbox Version 1.0; workshops	Contractor citation; LXO module v2	CBP Toolbox Version 2.0; Stadium module
Oxidation		Priority need	LXO development	LXO development; experiments	CBP Toolbox Version 2.0; Tc focus
Transport in Fractured Media			Priority need	Dual-regime LXO transport	CBP Toolbox Version 2.0
Unsaturated Hydraulic Properties of Fractured Media			Priority need	Exp. method; Contractor funding	Sample characterization
Damage Prediction			Priority need	Sulfate Attack	STADIUM development
Microstructure → Material Properties				Priority need	THAMES funding and scope

DOE Complex Applications

Complete (SRR):

Sulfate attack on Saltstone concrete for closure scenario

Active (DOE-SR):

Sulfate attack on Saltstone concrete for operational scenario

Potential:

- Carbonation-influenced steel corrosion damage to concrete
- Primary constituent leaching damage to Saltstone

FY13/14 Saltstone Special Analysis

CBP: Sulfate Attack on Saltstone Concrete (CBP)

- LeachXS/Orchestra and Stadium predictions of degradation rate
- Defined times for 100% degradation (full penetration)
- Example results for Roof, Floor and Wall components:

	SDU6					SDU2			SDU4			
	Thick	ness:	NV	BE	Thick	ness:	NV	BE	Thick	ness:	NV	BE
Component	(in)	(cm)	(yr)	(yr)	(in)	(cm)	(yr)	(yr)	(in)	(cm)	(yr)	(yr)
Roof delay			0	0			0	0			0	0
Roof delay+degradation	12	30.48	1413	2717	8	20	961	1820	4	10	1106	7237
FloorUMM delay			0	0			0	0			0	0
FloorUMM delay+degradation	12	30.48	1413	2717	12	30	1413	2717	24	61	1404	3868
Wall 5 delay			0	0			0	0				
Wall delay+degradation	8.75	22.23	817	1937	8	20	922	1797				
Wall 4 delay			0	0								
Wall 2 delay+degradation	10.47	26.59	981	2329								
Wall 3 delay			0	0								
Wall 3 delay+degradation	13.5	34.29	1265	3021								
Wall 2 delay			0	0								
Wall 4 delay+degradation	16.55	42.04	1550	3720								
Wall 1 delay			0	0								
Wall 5 delay+degradation	19.5	49.53	1827	4397								

FY13/14 Saltstone Special Analysis

Contractor: Effective Hydraulic Properties of Concrete

- 0% and 100% degradation times defined from CBP analysis
- 100% degradation defined as degradation to a soil-like condition
- Effective hydraulic properties defined by arithmetic averaging based on degraded and intact thicknesses
 - conservative-tending
 - harmonic average alternative

FY13/14 Saltstone Special Analysis

Arithmetic Averaging = Equivalent Continuum Model

Active: Operational Scenarios

Influence of capillary flow driven by

- Initially unsaturated concrete exposed to bleedwater and/or fresh grout
- Concrete exterior exposed to atmosphere

Summary

- CBP data and software are designed to address PA challenges arising from
 - Long time frames
 - Cementitious material degradation
 - Uncertainty
 - Computing and schedule limitations
- CBP software tools can engage the PA process in multiple ways
 - Provide higher fidelity models for particular phenomena
 - Support model abstraction
- CBP tools are 'GoldSim-ready'