Cementitious Barriers Partnership
Project Overview

David S. Kosson
Vanderbilt University and CRESP
Cementitious Barriers Partnership

CBP Training
August 26, 2014
Project Need

• Cementitious materials used broadly by DOE-EM to accomplish its mission.
 – **Low-Activity Waste (LAW) and Secondary Waste forms**
 (i.e., Saltstone at SRS, Cast Stone at ORP)
 – **High-Level Waste (HLW) Tank Integrity and Tank Closure requirements**
 – Nuclear power plant concrete structures (e.g., Seabrook Nuclear Power Plant)
 – Used nuclear fuel storage – fuel pools and dry casks (e.g., TMI-2)
 – Facility Decommissioning & Decontamination (D&D) and entombment (P-Reactor at SRS)
 – Alternative waste forms for near surface disposal (i.e., grouted waste forms)
 – **In-situ** grouting for vadose zone remediation

• Considerable technical debate over physical/chemical performance and service life of cement materials in nuclear applications because of absence of modern, phenomenologically-based models and experimental methods that are mutually agreed upon by technical and regulatory communities.
Primary Near-term Applications

- Hanford
 - Single shell tank integrity
 - C-Tank Farm – HLW tank closure assessment
 - Integrated Disposal Area Performance Assessment (PA)
 - Source term from Cast Stone (secondary waste, LAW supplemental treatment)
 - *In-situ* grouting performance

- Savannah River
 - Saltstone Performance
 - Disposal vaults and other concrete facilities

- Nuclear Energy
 - Dry cask storage performance
 - License extensions
Key Questions

• **Waste Forms and Disposal Systems**
 – What is the rate of release for radionuclides and contaminants under a range of scenarios?
 – What is the evolution of system pH?
 – What are the effects of cracking?
 – What is the rate and impact of aging processes (oxidation (Tc-99), carbonation, and leaching)?

• **Structural Systems Performance**
 – What is the service life?
 – What are the impacts of ingress of aggressive species (chloride, sulfate)?
Project Goal

Develop a reasonable and credible set of tools to predict the structural, hydraulic and chemical performance of cement barriers used in nuclear applications over extended time frames (e.g., up to and >100 years for operating facilities and >1000 years for waste management).

• Mechanistic / Phenomenological Basis
• Parameter Estimation and Measurement
• Boundary Conditions (physical, chemical interfaces)
• Uncertainty Characterization
Project Team Members

Vanderbilt University & CRESP
D. Kosson*, K. Brown*, S. Mahadevan, J. Arnold, F. Sanchez

Savannah River National Laboratory (SRNL)

Energy Research Centre of The Netherlands (ECN) & CRESP
H. van der Sloot (HvdS Consultancy), J.C.L. Meeussen (NRG), P. Seignette

National Institute of Standards and Technology (NIST)
E. Garboczi, K. Snyder, J. Bullard, P. Stutzman

Nuclear Regulatory Commission (NRC)
D. Esh, M. Furman, J. Phillip

SIMCO Technologies, Inc. (Canada)
E. Samson, J. Marchand

*Project Leadership Team

DOE-EM Project Manager: Pramod Mallick
Technical Strategy / Approach

• **Reference Cases** — provide basis for comparison and demonstration of CBP tools
 – Cementitious waste form in concrete disposal vault with cap
 – Grouted high-level waste (HLW) tank closure
 – Used nuclear fuel pool, dray cask storage (future)
 – Nuclear processing facilities closure / D&D (e.g., canyons)
 – Grouted vadose zone contamination
 – Materials – surrogate low-activity waste (LAW) cementitious waste form, reducing grout, reinforced concrete (historical), reinforced concrete (future)

• **Extension/enhancement of existing tools** — CEMHYD3D/THAMES, STADIUM, LeachXS/ORCHESTRA, GoldSim Performance Assessment (PA) framework

• **Coordinated experimental and computational program**
 – Conceptual model improvement
 – Define test methods and parameter measurements
 – Model validation

→ **CBP Software ToolBox Version 2.0 Release (January 2014)**
Specifications, Properties, and Phenomena for the Evaluation of Performance of Cementitious Barriers
Key Aging Phenomena

Key Phenomena Addressed

- Chloride ingress and corrosion
- Leaching
- Sulfate attack (2011)
- Carbonation (2012)
- Oxidation (2012-2014)
- Cracking (2013-2014)
- Pore structure relationships with mass transfer and hydraulic properties (future)
- Alkali-silica reaction (ASR) (future)

Integration with Conceptual Models

- Coupled phenomena
- Saturated, unsaturated and variable saturation
- Liquid, vapor mass transfer
- System geometry and boundary conditions
CBP Partner Codes and Integration

• Partner Codes provide for scenario development, design evaluation and model parameterization
 ✓ STADIUM – Physical & Hydraulic Performance
 ✓ LeachXS/ORCHESTRA – Chemical Performance & Constituent Release, also coupled with physical properties/damage evolution
 ✓ THAMES – Microstructure Evolution & Properties*

• GoldSim Software ToolBox (CBP Custom DLL) with STADIUM and LeachXS/ORCHESTRA
 ✓ User scenarios developed in Partner Codes
 ✓ Monte Carlo simulations
 ✓ Integration with GoldSim Performance Assessment Models

*Further development on hold, pending available funding.
CBP Software ToolBox—Phase I

Provides tools for Monte Carlo uncertainty assessment and integration with Performance Assessments

- GoldSim
 - Compositions and physical property data
 - Dynamic-link library
 - External Interface

- Mesh2d

- Text files

- STADIUM
 - Structural Service Life

- LeachXS/ORCHESTRA
 - Chemical Evolution and Leaching

Experimental Data
- Methods
- Parameters
- Verification (Lab & Field)
Key Advances Included in CBP Toolbox Version 2.0 – LeachXS/ORCHESTRA

• Simulation basis for additional materials, solutions, water contact modes
 – CEM I (Portland cement), Vault concretes (VCO, VCT), Closure grout (BGM), Salt waste form (AWF)
 – DI water, Hanford infiltration, TCLP, sea water, user defined
 – Batch exchange, intermittent flow, continuous flow

• Additional Scenarios Defined
 – Laboratory cases – batch pH dependence (pE, LS), monolith, percolation column
 – Prediction cases – monolith (saturated, unsaturated, carbonation, sulfate attack), percolation (dual porosity), percolation (cracked materials)
 – Radionuclides using NEA thermodynamics database

• Data Sets
Key Advances Included in CBP Toolbox Version 2.0 – STADIUM

- Chloride Attack module added
- Improved mineral set in Sulfate and Chloride Attack modules
- Changes to allowable mesh size and input parameter values
Key Advances Included in CBP Toolbox Version 2.0 – GoldSim Interface

• Maximum nodes increased from 301 to 501
• GoldSim simulation time is now used to set the LeachXS/ORCHESTRA simulation time
• Improved error trapping and reporting within the DLL interface
• Enhanced graphics using Gnuplot to display model results
 – Plotting by node number in Version 1.0
 – Plotting by position in Version 2.0
 – Concentration vs. position and time (surface plots) available in Version 2.0
Workshop Objectives

• Provide introduction and demonstration to CPB Toolbox Version 2.0
 – LeachXS/ORCHESTRA
 – STADIUM
 – GoldSim Interface for Monte Carlo Simulations

• Selection and Technical Basis/Limitations for Specific Applications

• End-user input for development and application needs
We want your input!

Please send comments to:
David.Kosson@Vanderbilt.edu