Leaching Assessment as Data Input, Materials Testing and Data Management with LeachXS/ORCHESTRA

David S. Kosson¹, Hans van der Sloot², Paul Seignette³, Kevin G. Brown¹, Hans Meeussen⁴

Vanderbilt University, Nashville, TN, USA
 Hans van der Sloot Consultancy, The Netherlands
 Energy Research Center of The Netherlands, The Netherlands
 Nuclear Research Group, The Netherlands

August 26, 2014

Presentation Outline

- Use of Leaching Assessment for Chemical Speciation
 Modeling and Performance Assessment
- US EPA Leaching Environmental Assessment Framework (LEAF)
- Data Management using CBP LeachXS/Orchestra

Use of Leaching Assessment

- Calibration and Verification of Chemical Speciation Models
 - Need for multiple lines of evidence
 - Equilibrium partitioning as a function of pH, liquid-to-solid ratio (LS), system composition, pE
 - X-ray diffraction, SEM-EDS
 - Literature models (Lothenbach, et. al, etc.)
 - Mass of constituents available for reaction ("Availability")

Dome Model Description

Thermodynamic model

- LeachXS/ORCHESTRA:
 - Solves system of equations:
 - Conservation of mass
 - Laws of mass action
 - Yields solid, aqueous, and gaseous speciation

- C-S-H:

- Ideal solid solution with
 Tobermorite- and Jennite-like
 end-members (from
 Lothenbach et al., 2008)
- No adsorption and (some)
 additional minerals in the model
- Dome construction material assumed to be Ordinary Portland Cement

Mineral phases

Mg(OH) ₂ Brucite	Ca(OH) ₂ Portlandite	C ₃ AH ₆ Hydrogarnet	C ₄ Ac _{0.5} H ₁₂ Hemi- carbonate	C ₆ As ₃ H ₃₂ Ettringite	
CaSO ₄ ·2H ₂ O <i>Gypsum</i>	CaCO ₃ Calcite	C₃FH ₆ Fe- hydrogarnet	C ₄ Fc _{0.5} H ₁₂ Fe-hemi- carbonate	C ₆ Fs ₃ H ₃₂ Fe-ettringite	
SiO ₂ (am) Amorphous Silica	C₂ASH ₈ Strätlingite	C ₃ AS _{0.8} H _{4.4} Siliceous Hydrogarnet	C ₄ AcH ₁₁ Mono- carbonate	C ₆ Ac ₃ H ₃₂ Tricarbo- aluminate	
Al(OH) ₃ (am) Amorphous Aluminum hydroxide	C₂FSH ₈ Fe- Strätlingite	C ₄ AH ₁₃ Hydroxy AFm	C ₄ FcH ₁₂ Fe-mono- carbonate	M ₄ AH ₁₀ Hydrotalcite	
Al ₂ O ₃ Alumina	C ₂ AH ₈ Unnamed meta- stable phase	C₄FH ₁₃ Fe-hydroxy AFm	C ₄ AsH ₁₂ Monosulfate	M ₄ FH ₁₀ Fe- hydrotalcite	
Fe(OH) ₃ (mic) Microcrystalline Iron hydroxide	C ₂ FH ₈ Unnamed meta- stable phase	Solid Solution: C _{1.67} SH _{2.1} Jennite	C ₄ FsH ₁₂ Fe- monosulfate	M₄AcH ₉ CO₃- Hydrotalcite	
Fe ₂ O ₃ Ferric oxide	CaSO ₄ Anhydrite	$C_{0.83}SH_{1.3}$ Tobermorite			

Comparison of 1313 Data and LXO Predictions

Experimental (CEM-I) data for HPC from USEPA Method 1313 (SW-846)

Partial Reaction of Binder Materials

Leaching Environmental Assessment Framework

A Decision Support System for Beneficial Use and Disposal Decisions in the United States and Internationally...

- Four leaching test methods
- Data management tools
- Geochemical speciation and mass transfer modeling
- Quality assurance/quality control for materials production
- Integrated leaching assessment approaches

... designed to identify characteristic leaching behaviors for a wide range of materials and scenarios.

LEAF Leaching Methods*

- Method 1313 Liquid-Solid Partitioning as a Function of Eluate pH using a Parallel Batch Procedure
- Method 1314 Liquid-Solid Partitioning as a Function of Liquid-Solid Ratio (L/S) using an Up-flow Percolation Column Procedure
- Method 1315 Mass Transfer Rates in Monolithic and Compacted Granular Materials using a Semi-dynamic Tank Leaching Procedure
- Method 1316 Liquid-Solid Partitioning as a Function of Liquid-Solid Ratio using a Parallel Batch Procedure

^{*}Posting to SW-846 as "New Methods" completed August 2013

Use of LEAF in the United States

- Guidance for use of LEAF is under development by EPA.
- ➤ LEAF is being used with increasing frequency by state regulators and industry.
- > Current uses include:
 - Coal combustion residues (i.e., fly ash and scrubber residues)
 evaluation for disposal and beneficial use as part of new regulations
 development (EPA)
 - Contaminated site remediation (Industry & State regulators, CERCLA?)
 - Evaluation of treatment process effectiveness (EPA and Industry)
 - Long-term performance of concrete and cementitious materials in nuclear energy and nuclear waste (DOE)

Method 1313 Overview

Equilibrium Leaching Test

Parallel batch as function of pH

Test Specifications

- 9 specified target pH values plus natural conditions analyses
- Size-reduced material
- L/S = 10 mL/g-dry
- Dilute HNO₃ or NaOH
- Contact time based on particle size
 - □ 18-72 hours
- Reported Data
 - □ Equivalents of acid/base added
 - □ Eluate pH and conductivity
 - □ Eluate constituent concentrations

Titration Curve and Liquid-solid Partitioning (LSP) Curve as Function of Eluate pH

Method 1314 Overview

Equilibrium Leaching Test

Percolation through loosely-packed material

Test Specifications

- 5-cm diameter x 30-cm high glass column
- Size-reduced material
- DI water or 1 mM CaCl₂ (clays, organic materials)
- Upward flow to minimize channeling
- Collect leachate at cumulative L/S
 - □ 0.2, 0.5, 1, 1.5, 2, 4.5, 5, 9.5, 10 mL/g-dry
- Reported Data
 - □ Eluate volume collected
 - □ Eluate pH and conductivity
 - □ Eluate constituent concentrations

Liquid-solid Partitioning (LSP) Curve as Function of L/S; Estimate of Pore Water Concentration

Method 1315 Overview

Mass-Transfer Test

Semi-dynamic tank leach test

Test Specifications

- Material forms
 - □ monolithic (all faces exposed)
 - □ compacted granular (1 circular face exposed)
- DI water so that waste dictates pH
- Liquid-surface area ratio (L/A) of 9±1 mL/cm²
- Refresh leaching solution at cumulative times
 2, 25, 48 hrs, 7, 14, 28, 42, 49, 63 days
- Reported Data
 - □ Refresh time
 - □ Eluate pH and conductivity
 - □ Eluate constituent concentrations

Flux and Cumulative Release as a Function of Leaching Time

Monolithic

Granular

Method 1316 Overview

Equilibrium Leaching Test

Parallel batch as function of L/S

Test Specifications

- Five specified L/S values (±0.2 mL/g-dry)
 10, 5, 2, 1, 0.5 mL/g-dry
- Size-reduced material
- DI water (material dictates pH)
- Contact time based on particle size
 □ 18-72 hours
- Reported Data
 - □ Eluate L/S
 - □ Eluate pH and conductivity
 - □ Eluate constituent concentrations

Liquid-solid Partitioning (LSP) Curve as a Function of L/S; Estimate of Pore Water Concentration

Study Materials for Methods Validation

Coal Combustion Fly Ash

- Collected for EPA study
- Selected for validation of ...
 - Method 1313/1316 Phase I
 - Method 1314 Phase I

Solidified Waste Analog

- Cement/slag/fly ash spiked with metal salts
- Selected for validation of ...
 - □ Method 1313/1316 Phase II
 - Method 1315 Phase I
 - Method 1314 Phase II

Contaminated Field Soil

- Smelter soil
- Collection in process
- Selected for validation of...
 - □ Method 1313/1316 Phase II
 - Method 1315 Phase II
 - □ Method 1314 Phase II

Foundry Sand

- Collection in process
- Selected for validation of ...
 - Method 1315 Phase II
 - Method 1314 Phase II

LEAF Method Precision

Method	Test Output	RSD _r (%)	RSD _R (%)
Method 1313	Eluate Concentration (average over pH range)	10	26
Method 1314	Eluate Concentration (9th fraction at L/S=10) Mass Release (cumulative to L/S=0.5) Mass Release (cumulative to L/S=10)	13 7 5	28 18 14
Method 1315	Interval Flux (average excluding wash-off) Mass Release (cumulative to 7-days) Mass Release (cumulative to 63-days)	11 9 6	28 19 23
Method 1316	Eluate Concentration (average over L/S range)	7	17

Validation Reports

EPA-600/R-12/623 "Interlaboratory Validation of the Leaching Environmental Assessment Framework (LEAF) Leaching Tests for Inclusion into SW-846: Method 1313 and Method 1316," September 2012.

EPA-600/R-12/624 "Interlaboratory Validation of the Leaching Environmental Assessment Framework (LEAF) Leaching Tests for Inclusion into SW-846: Method 1314 and Method 1315," September 2012.

What about TCLP and SPLP?

Data Management in LXO

- **Databases**
 - Experimental data
 - Chemical speciation thermodynamics
 - Scenario case studies ("case files")
- Data Input and Exchange
 - Excel templates for testing results (3 versions)
 - XML files for exchange and building custom databases
 - Case file import/export tools
- **Data Evaluation**
 - Graphing, data comparison, model comparison (output to Excel files)
 - Statistical evaluations
 - Titration calculator (ANC/BNC)
 - ANS 16.1 Leaching Index (in testing)