Leaching Environmental Assessment Framework

The Leaching Environmental Assessment Framework as a Tool for Risk-informed, Science-based Regulation

D.S. Kosson¹, A.C. Garrabrants¹, Hans van der Sloot², Susan Thorneloe³, Richard Benware⁴, Greg Helms⁴, and Mark Baldwin⁴

¹ Vanderbilt University, Nashville, TN
 ² van der Sloot Consultancy, Langedijk, the Netherlands
 ³ U.S. EPA Office of Research and Development, RTP, NC
 ⁴ U.S. EPA Office of Resource Conservation & Recovery, Washington DC

Presentation Outline

Introduction to Leaching Assessment

Overview of LEAF

- Leaching Tests
- Data Management

Overview of Interlaboratory Validation

Applicability to DOE Challenges

Conclusions

Materials Testing – Historically

1960s-1990s

Protection from hazardous wastes; waste minimization/conservation.

- Classification of "hazardous" waste (RCRA Subtitle C/D landfills)
- Acceptance criteria for disposal of treated wastes (Universal Treatment Standards)
- Best demonstrated available treatment (BDAT)

1990s - present

Move toward integrated materials management; balancing overall environmental performance with materials costs and long-term liability

- Global economic policy (resource costs, international trade)
- Risk-informed waste management practices
- Changing definition of waste materials (e.g., Dutch Building Materials Decree; U.S. definition of solid waste)
- Applications for waste delisting and alternative measures of treatment effectiveness
- Re-use of waste materials (mine reclamation, alternative construction materials)

What is Leaching?

Process by which constituents of a solid material are released into a contacting water phase

Percolation Release

- Water passes thru material
- Equilibrium
- High concentration

Mass Transfer Release

- Water flows around material
- Diffusion to material surface
- Lower concentration

Leaching - Controlling Factors

5

Total Content

Total Content Does Not Correlate to Leaching

6

Many Leaching Scenarios ...

Common Assessment Approach

Leaching Tests

Total Content

• Correlation to leaching?

Regulatory Tests

- Comparison to limits
- Does not consider
 - Release Scenario
 - □ Time (kinetics)
 - Mass Transport

Characterization Tests

- Range of conditions
- Comparisons between
 D Materials
 - □ Treatments
 - Scenarios

Leaching Method Development

Leaching characterization applied to anticipated release conditions resulting in improved accuracy and more reliable environmental decision making

"An Integrated Framework for Evaluating Leaching in Waste Management and Utilization of Secondary Materials," D.S. Kosson, H.A. van der Sloot, F. Sanchez, and A.C. Garrabrants, Environmental Engineering Science, 19(3): 159-204, 2002.

Parallel and coordinated methods development in the EU and US

Designed to address concerns of EPA Science Advisory Board

- Form of the material (e.g., monolithic)
- Leaching parameters (e.g., pH, liquid-solid ratio (L/S), release rate)

Intended for situations where TCLP is not required or best suited

- Assessment of materials for beneficial reuse
- Evaluating treatment effectiveness (determination of equivalent treatment)
- Characterizing potential release from high-volume materials
- Corrective action (remediation decisions)

Leaching Environmental Assessment Framework

LEAF is a collection of ...

- Four leaching methods
- Data management tools
- Geochemical speciation and mass transfer modeling
- Quality assurance/quality control for materials production
- Integrated leaching assessment approaches

... designed to identify characteristic leaching behaviors for a wide range of materials and associated use and disposal scenarios.

LEAF facilitates integration of leaching methods which provides a material-specific "source term" release for support of material management decisions.

More information at http://www.vanderbilt.edu/leaching

LEAF Leaching Methods

- Method 1313 Liquid-Solid Partitioning as a Function of Eluate pH using a Parallel Batch Procedure
- Method 1314 Liquid-Solid Partitioning as a Function of Liquid-Solid Ratio (L/S) using an Up-flow Percolation Column Procedure
- Method 1315 Mass Transfer Rates in Monolithic and Compacted Granular Materials using a Semi-dynamic Tank Leaching Procedure
- Method 1316 Liquid-Solid Partitioning as a Function of Liquid-Solid Ratio using a Parallel Batch Procedure

Note: Incorporation into SW-846 is ongoing; method identification numbers are subject to change

Method 1313 Overview

Equilibrium Leaching Test

- Parallel batch as function of pH
- **Test Specifications**
 - 9 specified target pH values plus natural conditions
 - Size-reduced material
 - L/S = 10 mL/g-dry
 - Dilute HNO₃ or NaOH
 - Contact time based on particle size

 18-72 hours
 - Reported Data
 - □ Equivalents of acid/base added
 - □ Eluate pH and conductivity
 - □ Eluate constituent concentrations

Titration Curve and Liquid-solid Partitioning (LSP) Curve as Function of Eluate pH

Method 1314 Overview

Equilibrium Leaching Test

- Percolation through loosely-packed material
- **Test Specifications**
 - 5-cm diameter x 30-cm high glass column
 - Size-reduced material
 - DI water or 1 mM CaCl₂ (clays, organic materials)
 - Upward flow to minimize channeling
 - Collect leachate at cumulative L/S
 0.2, 0.5, 1, 1.5, 2, 4.5, 5, 9.5, 10 mL/g-dry
 - Reported Data
 - □ Eluate volume collected
 - □ Eluate pH and conductivity
 - Eluate constituent concentrations

Liquid-solid Partitioning (LSP) Curve as Function of L/S; Estimate of Pore Water Concentration

Method 1315 Overview

Method 1316 Overview

Equilibrium Leaching Test

- Parallel batch as function of L/S
- **Test Specifications**
 - Five specified L/S values (±0.2 mL/g-dry)

 10.0, 5.0, 2.0, 1.0, 0.5 mL/g-dry
 - Size-reduced material
 - DI water (material dictates pH)
 - Contact time based on particle size

 18-72 hours
 - Reported Data
 - □ Eluate L/S
 - □ Eluate pH and conductivity
 - Eluate constituent concentrations

Liquid-solid Partitioning (LSP) Curve as a Function of L/S; Estimate of Pore Water Concentration

Data Management Tools

Data Templates

- Excel Spreadsheets for Each Method
 - □ Perform basic, required calculations (e.g, moisture content)
 - Record laboratory data
 - □ Archive analytical data with laboratory information
- Form the upload file to materials database

LeachXS (Leaching eXpert System) Lite

- Data management, visualization and processing program
- Compare Leaching Test Data
 - □ Between materials for a single constituent (e.g., As in two different CCRs)
 - $\hfill\square$ Between constituents in a single material (e.g., Ba and SO₄ in cement)
 - □ To default or user-defined "indicator lines" (e.g., QA limits, threshold values)
- Export leaching data to Excel spreadsheets
- Freely available at http://www.vanderbilt.edu/leaching

Data Templates

	DRAFT MET	HOD	1313 (Liquid-So	olid Part	itioning	as a Fun	ction of	pH) LAB	DATA			1) Ente and se	er particle olids cor	e size ntent		
		-	Code	Descriptio	on (optiona	al)		Test con	ducted by:			<u> </u>	ļ		Extrac	tion Infor	mation
	Pro	oject	ABC	Example	project										LS Ratio	10	[mL/g-dry
	Material XYZ			Exaple material			Solids Information					Liquid Volume / Extraction			200	[mL]	
	Repli	cate	А				Ma	iximum Pa	rticle Size	0.3	[mm]		Recomn	nended Bo	ttle Size *	250	[mL]
						N	linimum D	ry Equivale	ent Mass *	20.00	[g-dry]						
		_	Date	Time			Solids (Content (d	efault = 1)	0.901	[g-dry/g]	2) [- ntor	7	Nominal	Reagent Ir	formation
	Test	Start	1/2/xx	2:00 PM		Mass of "A	s Tested"	Material /	Extraction	22.20	[g]		Enter	1	Acid Type	HNO3	
	Test	t End	1/3/xx	1:45 PM								acid	/base	Acid	Normality	2.0	[meq/mL]
	Required	Conta	ct Time *	23-25	[hr]	* Data bas	ed on Draf	t Method	1313 Table	1.		typ	be &		Base Type	NaOH	
	Fellow "eat											nori	mality	Base	Normality	1.0	[meq/mL]
4)	Follow Set-			Schedule	of Acid and	d Base Add	ition							-			
	up recipe	est	Pesition	T01	T02	T03	T04	T05	T06	T07	T08	T09	B01	B02	B03	1	totals
	"As Tested" Sc	olid [g]	(±0.05g)	22.20	22.20	22.20	22.20	22.20	22.20	22.20	22.20	22.20	no solid	no solid	no solid		199.8
	Reagent W	ater[r	nL] (±5%)	147.80	167.80	185.80	197.80	195.80	193.80	189.80	185.80	178.80	200.00	181.00	150.00		2174.2
	Acid Volu	ime [n	nL] (±1%)	-	-	-	-	2.00	4.00	8.00	12.00	19.00	-	19.00	-		64.0
	Base Volu	ime [n	nL] (±1%)	50.00	30.00	12.00	-	-	-	-	-	-	-	-	50.00		142.0
	Acid Norm	ality [meq/mLJ	-	-	-	-	2.0	2.0	2.0	2.0	2.0	-	2.0	-		
	Base Normality [meq/mL]		1.0						-		3) Enter	target eo	quivalen	its			
		1	Target pH	13.0±0.5	12.0±0.5	10.5±0.5	natural	8.0±0.5	7.0±0.5	5.5±0.5	4.0±0.5	2.0±0.5	\land	from	titration	curve	
	Acid Ad	dition	[meq/g]	-2.5	-1.5	-0.6	0	0.2	0.4	0.8	1.2	1.9 🖊	Water	Acid	Base		
		ן ד	luate pH	12.80	12.20	10.80	9.20	7.80	5.98	4.79	3.60	2.30		6) Vorify	that find	In ∐ic	
5) F	Record pH,	te EC	[mS/cm]	\rightarrow										in and	uiat iiid		
COI	nductivity,	Eluate	Eh [mV]											In acce	eptable i	ange	
Eh	(optional)	nter "a	a" or "r")	~	•	>	>	~	×	×	~	`					
		-	Notes						pH out of	pH out of							
									range	range							

LeachXS Lite

LEAF Methods Validation

Study Materials

Coal Combustion Fly Ash

- Collected for EPA study
- Selected for validation of ...
 - □ Method 1313
 - □ Method 1316

Solidified Waste Analog

- Created at Vanderbilt University
- Blast Furnace Slag, Class C Fly Ash, Type I/II Cement, Metal Salts
- Selected for validation of ...
 - □ Method 1313
 - □ Method 1316
 - □ Method 1315

Contaminated Field Soil

- Copper smelter site
- Selected for validation of...
 - □ Method 1313
 - □ Method 1316
 - □ Method 1315
 - □ Method 1314

Brass Foundry Sand

Selected for validation of ...
 Method 1315
 Method 1314

Method 1313 Validation

22

Data Processing

Log₁₀-Transform of Test Output

- Method 1313 Eluate Concentration
- Method 1314 Eluate Concentration, Cumulative Mass Release
- Method 1315 Interval Mass Flux, Cumulative Mass Release
- Method 1316 Eluate Concentration

Linear Interpolation and Extrapolation

- Collected Data Shows Variability
- Brings Data to Specified pH, L/S or Time
- Consistency in Comparisons

Implications for Compliance Standards

23

LEAF Method Precision

Method	Test Output	RSD _r (%)	RSD _R (%)
Method 1313	Eluate Concentration (average over pH range)	10	26
Method 1314	Eluate Concentration (9 th fraction at L/S=10) Mass Release (cumulative to L/S=0.5) Mass Release (cumulative to L/S=10)	13 7 5	28 18 14
Method 1315	Interval Flux (average excluding wash-off) Mass Release (cumulative to 7-days) Mass Release (cumulative to 63-days)	11 9 6	28 19 23
Method 1316	Eluate Concentration (average over L/S range)	7	17

Precision Comparison (pH-dependence Tests)

Repeatability

Reproducibility

Precision Comparison (Percolation Tests)

EPA Database Field leachate samples for fly ash only comparison with LEAF (EPA-600/R-09/151) All Fly Ash 5th, 50th, 95th percentiles and maximums

Comparison of Laboratory and Field Results

Consistent behaviour in different scales of testing

Generic Vault Disposal System

Monolithic Matrix

Physical Integrity & Water Contact

Conceptual Model

- Micro-cracks develop, increasing solid-liquid surface area
- Bridging of micro-cracks create macro-cracks
- Through-cracks develop over time, leading to convective flow
- Ultimate end state may be permeable matrix – release based on local equilibrium

Impact

- Need to account for the sequence of physical states and rate of changes
- Influences chemical reactions and constituent release
- Both "intact" & "degraded" cases are simplistic and may not be realistic

Physical Integrity & Water Contact

Monolithic Matrix

- Flow-around
- Low interfacial area
- Diffusive release

Stressed Matrix

- Flow-around/through
- Higher interfacial area
- Diffusion-convection

Spalled Matrix

- High permeability
- Very high interfacial area
- Equilibrium-based release

Needed Information

External stresses

External loads

Differential settlement

- Material strength (e.g., Young's Modulus)
- Material pore structure
- Internal stresses

□Shrinkage/dehydration

Expansive reactions within pores

Moisture Transport

Conceptual Model

- Waste form consumes water via hydration reactions
- Moisture exchange w/environment
 - Evaporation/condensation
 - Capillary suction
 - Intermittent wetting (precipitation)
 - Percolation (degraded matrix)
- Water content determines
 - Gaseous degradation processes (oxidation, carbonation)
 - Constituent diffusion pathways

⇒Impact

٠

- Spatial & temporal moisture gradients
- Diffusivities are not constant over moisture regime
- Fractional saturation
 - Increases the importance of gas phase transport & reactions

Moisture Transport

Needed Information

- Water producing & water consuming reactions
- Water retention curves (capillarity)
- Relative humidity-material saturation equilibrium
- Drying rates
- Permeability (water)
- Boundary conditions
 - Episodic infiltration
 - Relative humidity

Oxidation Rates and Extent

	Air	Water	Ratio (A/W)		
D _{O2} [cm²/s]	0.21	0.000019	1.1E+04		
Conc of O ₂ [mole/L]	8.9E-03	2.6E-04	1.4E+01		

(1) Wilke and Chang, 1955

(2) www.swbic.org/education/ env-engr/gastransfer/gastransf.html

Conceptual Model

- Waste form pores two phase system of gas and liquid; depends on moisture content (saturation)
- O₂ transport via gaseous diffusion may be important depending on saturation.
- Oxidation may lead to change in leaching behavior
 - Increased Tc-99 release; other redox sensitive constituents

Impact

- Gas phase transport must be considered
 - Flux of O_2 (gas) ~10⁵ > liquid phase flux

Oxidation Rates and Extent

Needed Information

- Reducing capacity & redox titration
- Moisture status
- Gas phase diffusivity f(saturation)
- Liquid phase diffusivity f(saturation)
- Boundary conditions

Carbonation

Conceptual Model

- $CO_3^{-2} + Ca^{+2} \rightarrow CaCO_3$ (s)
 - Gas phase diffusion of CO₂
 - Liquid phase diffusion of HCO₃⁻
- Pore water pH decreased
 - Alters solubility of constituents (increase or decrease depending on species).
- Carbonation
 - Expansive precipitate internal stress (cracking)
 - Pore blocking increases diffusional resistance (decreases oxidation, release rates).
 - Extent and pore effects depend on waste form alkalinity and saturation

Impact

- Potential for speciation changes (e.g., As)
- Impact on sorption sites
- Pore structure changes
- May have either positive (e.g., pore capping) or detrimental (i.e., increased solubility) impacts

36

Processes and Impacts

Leaching of Major Constituents

Conceptual Model

- Transport described by moving dissolution fronts
- Precipitation/reaction processes near external boundaries may significantly impact release (+ or -)
- Dissolution/diffusion of Ca(OH)₂ and CSH control pore water pH
 pH gradients alter trace species release
- SO₄ leaching from waste into vault attacking concrete physical structure.
- Source of SO₄ may be waste or external environment

Impact

- Mass transport estimates may not reflect the dynamic chemistry and mineralogy of the waste form.
- Release rates and extents mechanistically different from simplified assumptions, effecting predictability.

Leaching of Trace Constituents

Conceptual Model

- Release based on coupled chemistry and mass transport.
- Release dependent on:
 Moisture conditions
 - □ pH gradients
 - □ Redox chemistry
 - Boundary layer formation

Impact

 Performance assessments may over- or under-predict release

38

Leaching of Major & Trace Constituents

Needed Information

- pH dependent equilibrium
- Column test
 Pore water
 LS evolution
- Analysis of
 - 🗅 pH, EC, Eh
 - Full suite of cations and anions
 - □ TOC, TIC, DOC, DIC
- Boundary Conditions!

A Possible Approach to Beneficial Use Screening Levels

Supporting Documentation

H.A. van der Sloot, D.S. Kosson, A.C. Garrabrants and J. Arnold *The Impact of Coal Combustion Fly Ash Used as a Supplemental Cementitious Material on the Leaching of Constituents from Cements and Concretes*, draft report in administrative review (submitted Nov 2011).

A.C. Garrabrants, D.S. Kosson, L. Stefanski, R. DeLapp, P.F.A.B. Seignette, H.A. van der Sloot, P. Kariher and M. Baldwin *Interlaboratory Validation of the Leaching Environmental Assessment Framework (LEAF) Leaching Tests for Inclusion into SW-846: Method 1313 and Method 1316*, draft report in administrative review (submitted Nov 2011)

A.C. Garrabrants, D.S. Kosson, H.A. van der Sloot, F. Sanchez, and O. Hjelmar (2010) *Background Information for the Leaching Environmental Assessment Framework Test Methods*, EPA/600/R-10/170, December 2010; <u>http://www.epa.gov/nrmrl/pubs/600r10170/600r10170.pdf</u>.

S.A. Thorneloe, D.S. Kosson, F. Sanchez, A.C. Garrabrants, and G. Helms (2010) "Evaluating the Fate of Metals in Air Pollution Control Residues from Coal-Fired Power Plants," *Environmental Science & Technology*, 44(19), 7351-7356, <u>http://pubs.acs.org/doi/pdfplus/10.1021/es1016558</u>.

D. Kosson, F. Sanchez, P. Kariher, L. Turner, D. Delapp, P. Seignette and S. Thorneloe (2009) *Characterization of Coal Combustion Residues from Electric Utilities - Leaching and Characterization Data,* EPA-600/R-09/151, December 2009; <u>http://www.epa.gov/nrmrl/pubs/600r09151/600r09151.html.</u>

F. Sanchez, D. Kosson, R. Keeney, R. DeLapp, L. Turner, P. Kariher, and S. Thorneloe (2008) *Characterization of Coal Combustion Residues from Electric Utilities Using Wet Scrubbers for Multi-Pollutant Control,* EPA-600/R-08/077, July 2008; www.epa.gov/nrmrl/pubs/600r08077/600r08077.pdf.

F. Sanchez, R. Keeney, D. Kosson, R. Delapp and S. Thorneloe (2006) *Characterization of Mercury-Enriched Coal Combustion Residues from Electric Utilities Using Enhanced Sorbents for Mercury Control*, EPA-600/R-06/008, February 2006; <u>http://www.epa.gov/ORD/NRMRL/pubs/600r06008/600r06008.pdf</u>.

D.S. Kosson, H.A. van der Sloot, F. Sanchez, and A.C. Garrabrants (2002) "An integrated framework for evaluating leaching in waste management and utilization of secondary materials," *Environmental Engineering Science*, 19(3), 159-204.

4

Benefits to Use of LEAF

- Provides standardization in leach testing and comparability in resulting data for use across different materials and management scenarios
- Analytical work complete for all four methods as part of the interlaboratory validation for inclusion into SW-846
- Comparable methods being used abroad enable more robust data sets that provide better characterization across material types and management scenarios
- Provides data needed for binning materials into categories that enable more efficient beneficial use decisions (no or less stringent testing required depending upon the leaching behavior of the material)

Benefits to Use of LEAF

- Industry that generates CCRs and other industrial by-products has clarity in what is required and access to labs across the U.S.
- Provides objective and independent analysis of claims made by producers or technologies
- LEAF allows one to understand the mechanistic behavior of materials across a range of management scenarios across long terms (can not use snap shot approach that doesn't consider future environmental conditions)
- Provides robust source term for risk assessment by considering physical and chemical factors that control leaching behavior over time

Conclusions

The LEAF test methods

- Can be used to evaluate leaching behavior of a wide range of materials using a tiered approach that considers the effect of leaching on pH, liquid-to-solid ratio, and physical form
- Prepared for inclusion into SW846 EPA's compendium of test methods for waste and material characterization
- Supporting software (LeachXS-Lite) available for data entry, analysis, visualization, and reporting
- Demonstrated relevance for assessing release behavior under field conditions for use and disposal scenarios

Current efforts

- Complete interlaboratory validation for Method 1314 and Method 1315
- Provide information on
 - Relationship between the LEAF testing results and field leaching
 - Application of LEAF test methods for evaluating CCR use and disposal

Acknowledgements

Participating Laboratories

- Oak Ridge National Lab
- Pacific Northwest National Lab
- Savannah River National Lab
- ARCADIS-US, Inc.
- Test America, Inc.
- URS Corporation, Inc.

- Ohio State University
- University of Wisconsin (Madison)
- Missouri Univ. of Science & Tech.
- Vanderbilt University
- ECN
- DHI

Funding and Support

- U.S. EPA, Office of Research and Development
- U.S. EPA, Office of Resource Conservation and Recovery
- U.S. DOE, Office of Environmental Management
- Consortium for Risk Evaluation with Stakeholder Participation (CRESP)