Technical Basis for Cementitious Barriers Partnership Models

Sohini Sarkar¹, David S. Kosson¹, Hans van der Sloot², Hans Meeussen³, Kevin G. Brown¹, Greg Flach⁴, Sankaran Mahadevan¹, Paul Seignette⁵, Andrew C. Garrabrants¹

¹ Vanderbilt University, Nashville, TN, USA
 ² Hans van der Sloot Consultancy, The Netherlands
 ³ Nuclear Research Group, The Netherlands
 ⁴ Savannah River National Laboratory, Aiken, South Carolina, USA
 ⁵ Energy Research Center of The Netherlands, The Netherlands

July 19, 2012

LeachXS/ORCHESTRA

- LeachXS
 - Database expert/decision support system that includes leaching test results for 600+ materials, scenarios and regulations
 - Platform for assessing short- and long-term release of constituents
 of potential concern
 - Assists in source term evaluation through reactive transport and damage progression modeling
- ORCHESTRA
 - Numerical reactive transport simulation framework embedded in LeachXS
 - Models geochemical speciation and mass transport
 - Flexible and allows users to add/modify existing equations
 - Automatic usage of multiple processors/parallelization

Cementitious Barriers Modeling Scenarios

- Currently available:
 - pH dependent equilibrium
 - Test (M1313) and prediction cases
 - Monolith leaching scenario
 - Test (M1315) and prediction cases
 - Monolith leaching with carbonation and oxidation scenario
 - Prediction cases
 - Leaching with sulfate attack scenario
 - Prediction cases
- In progress:
 - Percolation scenario
 - Test (M1314) and prediction cases (local equilibrium & multiple mixed regime models)

Applications of Cementitious Barriers Models

Models	Applications
pH Dependence	Assessment of waste, waste form, grout and concrete leaching chemistry
Monolith leaching	Waste form leaching; grout and concrete durability
Leaching with oxidation and carbonation	Waste form leaching; grout and concrete durability; HLW tank integrity
Leaching with sulfate attack	Concrete durability and interfacial processes
Column percolation Homogeneous Dual porosity Percolation w/orthogonal diffusion	Leaching from contaminated soils; leaching and pH evolution from tank grouting (cracking scenarios)

Monolith Diffusion Test Scenario

Monolith Diffusion Test Scenario

Monolith Diffusion Test Scenario

Tailoring to specific test scenarios:

Solution Phase (initial and at refresh intervals)

- Liquid to surface area ratio
- Refresh scheme
 - Intermittent wetting
 - Continuous flow
 - Refresh at predefined rate
- Solution chemistry (preset or user defined)

Solid Phase (homogeneous or layers by node)

- Sample dimensions
- Number of nodes
- Saturation
- Chemical composition
- Mineralogical composition
- Physical properties (porosity, tortuosity)

NIST National Institute of U.S.NRC

CRESP

SIMCO

Prediction Scenario – Monolith Leaching

1D idealization (1 m divided into 140 nodes using polynomial meshing scheme)

Monolith Diffusion Tank Model Framework

Diffusion of lons

Governing Equation for Diffusion

Being implemented currently

- c- concentrations of species (moles/L)
- ϕ porosity (for saturated materials) (L/L)

$$D_0$$
 – free solution diffusivity (m²/s)

- τ tortuosity (m/m)
- γ chemical activity coefficient (-)
- x spatial dimensions (m)
- t time(s)

Solved using a finite difference scheme.

Predefined Orchestra-LeachXS Solid-Aqueous (Gas) models

Using multi-component chemical interaction model

Including:

- 45 Elements / Master species including radionuclides
- Literature aqueous chemical complexation reactions (NIST/MINTEQV4)
- Literature adsorption models (Fe Al oxides: Dzombak & Morel 1990; Organic Matter Nica–Donnan: Kinniburgh et al 1996, Clay Ion exchange)
- Solid solution (ideal) for Ettringite + oxyanions, C-S-H
- Activity models: Davies, modified Davies, Pitzer (Samson *et al.*, 1999)

Chemical Reactions

- Available databases: MINTEQ, CEMDATA (Lothenbach *et al.,* 2007 and 2008), NEA patch
- Identify primary ions, complex ions automatically selected
- Potential solid phases: Identified by comparing results of pHdependent leaching tests (M1313) and simulations with different solid phase mineral sets

pH Dependent Release from Cement Mortars from Worldwide Origin

Uncertainty Quantification of Chemical Equilibrium Model

Problem Description (for the purpose of illustration)

- Experimental observations: pH dependence test data of 6 major species (Al, Ca, Fe, Mg, Si, S) for a concrete sample
- Calibration parameters: Equilibrium constants of 17 mineral phases
- Stochastic parameters: total leachable concentrations, measurement errors (pH, leahced concentrations

Uncertainty in Chemical Equilibrium Constants

NIST National Institute

U.S.NRC

Sarkar *et* al., Bayesian calibration of thermodynamic parameters for geochemical speciation modeling of cementitious materials, Cement and Concrete Research, 42(7), 889-902, 2012

16

SIMCO

Available Outputs

As a function of time at a certain depth in solid or external solution
As a function of depth at a certain time

- Distribution and percentage profiles
 - All phases
 - Solid phases
 - Dissolved phases
- Concentrations
 - Total
- Other variables
 - pH, pe, dissolved humic acid etc.

Prediction Scenario – Leaching with Carbonation and Oxidation

Leaching with Carbonation and Oxidation (1 Layer, unsaturated)

Prediction Scenario – Leaching with Carbonation and Oxidation

Default Template

Prediction Scenario – Leaching with Carbonation and Oxidation

Tailoring to specific test scenarios:

Solution Phase (initial and at refresh intervals)

- Liquid to surface area ratio
- Refresh scheme
 - Intermittent wetting
 - Refresh at predefined rate or Continuous flow
- Solution chemistry (preset or user defined)

Solid Phase (homogeneous or layers by node)

- Sample dimensions
- Number of nodes
- Saturation
- Chemical composition
- Mineralogical composition
- Physical properties (porosity, tortuosity)

Gas Phase (composition at boundary)

Leaching with Carbonation and Oxidation Model Framework

Diffusion and Chemical Reactions

Governing Equation for Dissolved Phase Diffusion

Millington and Quirk (1961)

Governing Equation for Gas Phase Diffusion

 $\frac{\partial(w_v c)}{\partial t} = \frac{\partial}{\partial x} \left(\frac{D_{0g} w_v}{\tau} \frac{w_v^{7/3}}{\phi^{7/3}} \left(\frac{\partial c}{\partial x} \right) \right) \qquad D_{0g} - \text{Gas diffusivity in air } (\text{m}^2/\text{s}) \\ w_v - \text{Void space } (\text{m}^3/\text{m}^3)$

- Chemical Reactions
 - Potential solid phases: Identified by comparing results of pHdependent leaching tests and simulations with different solid phase mineral sets using LeachXS/ORCHESTRA (by ECN)

Prediction Scenario – Leaching with Sulfate Attack

Sulfate Attack Scenario

Default Template

Numerical Model Framework

Diffusion and Chemical Reactions

Governing Equation for Diffusion

(saturated porous material under isothermal condition)

Chemical Reactions

 Potential solid phases: Identified by comparing results of pHdependent leaching tests and simulations with different solid phase mineral sets using LeachXS/ORCHESTRA (by ECN)

Strain Development Mechanism

• Diffusivity Change: $H_D(\varphi) = \exp((\varphi_{\text{original}} - \varphi_{\text{new}}) * 4.3 / \text{paste volume})$ (Samson and Marchand, 2007)

Damage Accumulation due to Cracking

Nonlinear Ascending Region

(Karihaloo, 1995, Budiansky and O'Connell, 1976)

Crack density parameter

$$C_d = k \left(1 - \frac{\varepsilon^{th}}{\varepsilon} \right)^m$$

$$\omega \approx \frac{16}{9}C_d$$

Damage parameter

Nonlinear Descending Region
 (Nemat-Nasser and Hori, 1993)
 Fracture Mechanics

$$\frac{\sigma}{f_t'} = \sqrt{\frac{\tan(\pi\omega_0/2)}{\tan(\pi\omega/2)}} \text{ and } \frac{w}{w_0} = \frac{\sigma}{f_t'} \left(\frac{\log(\sec(\pi\omega/2))}{\log(\sec(\pi\omega_0/2))}\right) - 1$$

Change in Diffusivity due to Cracking

Mean Field Regime

Assumption: randomly oriented penny-shaped cracks scattered in a homogeneous matrix (Salganik, 1974)

$$D = \frac{D_0}{\tau} \left(1 + \frac{32}{9}C_d\right)$$

U.S.NRC

SIMCO

NIST National Institute of

CRESP

Dilute concentration of cracks

Spanning cluster of cracks and macro-cracks

Percolation Regime

(Stauffer, 1985 and Krajcinovic et al., 1992)

$$D = \frac{D_0}{\tau} (1 + \frac{32}{9}C_d) + \frac{D_0}{\tau} \frac{(C_d - C_{dc})^2}{(C_{dec} - C_d)^2}$$

Model Calibration and Validation

- 7 cm x 20 mm CSA type 10 cement paste, porosity = 0.52, one face exposed
- Porosity : 0.52
- Calibration parameter: tortuosity (= 35) and b (= 0.3)
- 50 mmol/L of Na₂SO₄ solution at pH 10.3 in 30 L tank renewed every 7 days

Model calibrated with experimental results after 3 months and validated against experimental results after 1 year (experimental data from Samson and Marchand, 2007)

Consistent with other software which may have different applicabilities

Examples of Sensitivity Analysis

Factors Considered

- External solution concentration of sulfate solution (0.15, 0.25, 0.35, 0.45, 0.55 moles/L)
- Structure initial porosity (0.15, 0.2, 0.25, 0.3, 0.35, 0.4)
- Types of cement

Simulation Details

- 50 mm x 50 mm x 50 mm US type I sample, all faces exposed
- 350 mmol/L Na₂SO₄ external solution at pH 7
- Porosity : 0.25, tortuosity : 100
- Fraction of available porosity : 0.5
- Mortar Cement : water : sand (mass ratio) =
 1 : 0.5 : 3
- 7 day renewal rate of external solution for 2 years

External Solution Concentration

Sulfur Profile in Solid Phases

Rate of Damage Progression

 Rate of damage progression increases with increase in external sulfate solution concentration

Initial Porosity

 No direct linear relationship between rate of damage progression and amount of porosity

Types of Cement

Mineralogical Changes

Damage Parameter

 Damage progression depends on exposure conditions and material properties

Column Percolation Scenario (M1314)

Packed bed with size reduced/compacted sample

Column Percolation Scenario (M1314)

SIMCO

U.S.NRC

Mass Transport Through Dual Regime and Chemical Reactions

Mass Transport

Diffusion through the spherical particle:

Transport through mobile phase:

- c_m : Concentration in immobile phase
- D^m : Effective diffusivity through immobile phase

t : Time

r: Radial direction

Chemical Reactions

- $\frac{\partial c_m}{\partial t} = \frac{D^m}{r^2} \left(\frac{\partial^2 c_m}{\partial r^2} + \frac{2}{r} \frac{\partial c_m}{\partial r} \right)$ $\frac{\partial c_f}{\partial t} = D^f \frac{\partial^2 c_f}{\partial x^2} \frac{\partial}{\partial x} (qc_f) Q$ $c_f: \text{ Concentration in mobile phase}$ $D^f: \text{ Effective diffusivity through mobile phase}$ q: Volumetric water flux density
- Q: Flux density of ions from the spherical particles

 Potential solid phases: Identified by comparing results of pHdependent leaching tests and simulations with different solid phase mineral sets using LeachXS/ORCHESTRA (by ECN)

Column Percolation Scenario (M1314) – Example Outputs

LS can be converted to equivalent time using site specific information

▲ LS=10, recharge ● LS=10, precipitation

National Distribution of Time vs. LS

Percentiles	s Time (years) to reach LS = 2		Time (years) to reach LS = 10		100000.00						
	(Recharge based)	(Precipitati on based)	(Recharge based)	(Precipitati on based)	(subsection 1000.00	_					•
5	49	10	244	52	Ś					•	
10	83	19	416	92	2 100.00						
25	171	27	854	137		•					
50	285	40	1425	198	10.00	_					
75	582	64	2910	320	3						
90	2345	119	11710	594	1.00 -						
95	10170	153	50870	765	()	20	40	60	80	100
						Percentile					

Information used to generate LS to time

- Site-specific precipitation rates and HELP model generated recharge rates
- Fixed landfill density (U.S. EPA, 2006)
- Site-specific landfill depth

Summary

- Three main modeling scenarios currently available
 - Monolith leaching (test and prediction cases)
 - Monolith leaching with carbonation and oxidation (prediction case)
 - Leaching with sulfate attack (prediction case)

Refinements to the current models

- Polynomial meshing scheme implementation for the prediction cases
- 3-layer (waste-cement barrier-soil) implementation
- New modeling scenarios being implemented
 - Dual regime percolation (test and prediction cases)

Significance of CBP Modeling Scenarios

- Applicability:
 - Evaluation of waste forms and treatment process effectiveness
 - Concrete vault durability and radionuclide release
 - Source term for contaminated soils/vadose zone and waste disposal scenarios
 - HLW tank integrity analysis and closure
- Flexible framework that can be easily modified to reflect various testing and field conditions
- Can be compared with available test results from the database of a large selection of materials
- Useful framework for designing future structures and maintenance scheduling for existing structures