

CBP CODE INTEGRATION GOLDSIM DLL INTERFACE

 Frank Smith

Savannah River National Laboratory
Aiken, SC 29808

Greg Flach
Savannah River National Laboratory

Aiken, SC 29808

Kevin G. Brown
Vanderbilt University, School of Engineering

Consortium for Risk Evaluation with Stakeholder Participation III
Nashville, TN 37235

June 2010

CBP-TR-2010-009-2, Rev. 0

CBP Code Integration GoldSim DLL Interface

ii

ACKNOWLEDGEMENTS

This report was prepared for the United States Department of Energy in part under Contract No. DE-AC09-
08SR22470 and is an account of work performed in part under that contract. Reference herein to any specific
commercial product, process, or service by trademark, name, manufacturer, or otherwise does not necessarily
constitute or imply endorsement, recommendation, or favoring of same by Savannah River Nuclear Solutions
or by the United States Government or any agency thereof. The views and opinions of the authors expressed
herein do not necessarily state or reflect those of the United States Government or any agency thereof.

and

This report is based on work supported by the U. S. Department of Energy, under Cooperative Agreement
Number DE-FC01-06EW07053 entitled ‘The Consortium for Risk Evaluation with Stakeholder Participation
III’ awarded to Vanderbilt University. The opinions, findings, conclusions, or recommendations expressed
herein are those of the author(s) and do not necessarily represent the views of the U.S. Department of Energy
or Vanderbilt University.

DISCLAIMER

This work was prepared under an agreement with and funded by the U. S. Government. Neither the U.S.
Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express
or implied: 1. warranty or assumes any legal liability for the accuracy, completeness, or for the use or results of
such use of any information, product, or process disclosed; or 2. representation that such use or results of such
use would not infringe privately owned rights; or 3. endorsement or recommendation of any specifically
identified commercial product, process, or service. Any views and opinions of authors expressed in this work
do not necessarily state or reflect those of the United States Government, or its contractors, or subcontractors,
or subcontractors.

Printed in the United States of America

United States Department of Energy
Office of Environmental Management

Washington, DC

CBP Code Integration GoldSim DLL Interface

iii

FOREWORD

The Cementitious Barriers Partnership (CBP) Project is a multi-disciplinary, multi-institutional collaboration
supported by the United States Department of Energy (US DOE) Office of Waste Processing. The objective of
the CBP project is to develop a set of tools to improve understanding and prediction of the long-term
structural, hydraulic, and chemical performance of cementitious barriers used in nuclear applications.

A multi-disciplinary partnership of federal, academic, private sector, and international expertise has been
formed to accomplish the project objective. In addition to the US DOE, the CBP partners are the Savannah
River National Laboratory (SRNL), Vanderbilt University (VU) / Consortium for Risk Evaluation with
Stakeholder Participation (CRESP), Energy Research Center of the Netherlands (ECN), and SIMCO
Technologies, Inc. The Nuclear Regulatory Commission (NRC) is providing support under a Memorandum of
Understanding. The National Institute of Standards and Technology (NIST) is providing research under an
Interagency Agreement. Neither the NRC nor NIST are signatories to the Cooperative Research and
Development Agreement (CRADA).

The periods of cementitious performance being evaluated are up to or longer than 100 years for operating
facilities and longer than 1000 years for waste management. The set of simulation tools and data developed
under this project will be used to evaluate and predict the behavior of cementitious barriers used in near-
surface engineered waste disposal systems, e.g., waste forms, containment structures, entombments, and
environmental remediation, including decontamination and decommissioning analysis of structural concrete
components of nuclear facilities (spent-fuel pools, dry spent-fuel storage units, and recycling facilities such as
fuel fabrication, separations processes). Simulation parameters will be obtained from prior literature and will
be experimentally measured under this project, as necessary, to demonstrate application of the simulation tools
for three prototype applications (waste form in concrete vault, high-level waste tank grouting, and spent-fuel
pool). Test methods and data needs to support use of the simulation tools for future applications will be
defined.

The CBP project is a five-year effort focused on reducing the uncertainties of current methodologies for
assessing cementitious barrier performance and increasing the consistency and transparency of the assessment
process. The results of this project will enable improved risk-informed, performance-based decision-making
and support several of the strategic initiatives in the DOE Office of Environmental Management Engineering
& Technology Roadmap. Those strategic initiatives include 1) enhanced tank closure processes; 2) enhanced
stabilization technologies; 3) advanced predictive capabilities; 4) enhanced remediation methods; 5) adapted
technologies for site-specific and complex-wide D&D applications; 6) improved SNF storage, stabilization and
disposal preparation; 7) enhanced storage, monitoring and stabilization systems; and 8) enhanced long-term
performance evaluation and monitoring.

Christine A. Langton, PhD
Savannah River National Laboratory

David S. Kosson, PhD
Vanderbilt University / CRESP

CBP Code Integration GoldSim DLL Interface

iv

TABLE OF CONTENTS

Acknowledgements ... ii

Disclaimer .. ii

Foreword .. iii

Executive Summary ... iv

List of Figures .. vi

List of Tables .. vi

List of Acronyms and Abbreviations .. vii

1 Introduction .. 1

2 DLL Design ... 1

3 User Guide .. 4

3.1 PUT and GET .. 4

3.2 RPL ... 7

3.3 EXE ... 7

3.4 SUP ... 7

3.5 LOG .. 7

4 Examples ... 7

4.1 PUT/GET Example ... 7

4.2 STADIUM Example ... 11

5 References ... 19

Appendix

A Listing and Explanation of Subroutines in GoldSim DLL Interface .. 20

CBP Code Integration GoldSim DLL Interface

v

LIST OF FIGURES

Figure 1. Example DLL.dat file .. 3

Figure 2. DLL.dat file used to test DLL PUT and GET options ... 9

Figure 3. Input file used to test DLL PUT and GET options .. 10

Figure 4. Modified input file after running GoldSim .. 10

Figure 5. Template input file for STADIUM .. 12

Figure 6. STADIUM input file after execution of PUT and RPL commands ... 16

LIST OF TABLES

Table 1. Row Specification in Field 3 ... 5

Table 2. Column Specification in Field 7 .. 6

CBP Code Integration GoldSim DLL Interface

5

Table 1. Row Specification in Field 3

Key Word Function

row The row (record) number where the data is located is entered in Field 4.

record The record (row) number where the data is located is entered in Field 4.

label An alphanumeric label identifying the row where the data is located is
entered in Field 4 and the column where the label is to be read is entered in
Field 5.

value A numerical value that identifies the row where the data is located is
entered in Field 4, the column where the label is to be read is entered in
Field 5, and a tolerance on the value is entered in Field 6. A positive
tolerance in Field 6 specifies that an absolute difference is used to test if
the numerical value in Field 5 has been found while a negative tolerance
specifies a relative difference. The DLL reads numerical values in the
specified column and in all rows starting with the first row of data until the
specified value is found. The data entry at this location is then used in the
PUT or GET command.

string A character (alphanumeric) string identifying the row where the data is
located is entered in Field 4. The string can appear in any column. The
DLL reads record entries as text strings in the file starting with the first
row until the specified label is found. The data entry at this location is
then used in the PUT or GET command.

Field 7 – Field 10: These entries specify how the column in either the input or output files where the data
values are located is identified. The key words that can appear in Field 7 are listed in Table 2.

CBP Code Integration GoldSim DLL Interface

6

Table 2. Column Specification in Field 7

Key Word Function

col The column (field) number where the data is located is entered in Field 8.

field The field (column) number where the data is located is entered in Field 8.

heading An alphanumeric label identifying the column where the data is located is
entered in Field 8 and the row where the label is located is entered in Field
9. The DLL reads entries in the specified row starting with the first
column as text until the specified label is found. The data entry at this
location is then used in the PUT or GET command.

value A numerical value that identifies the column where the data is located is
entered in Field 8, the row where the value is located is entered in Field 9,
and a tolerance on the value is entered in Field 10. A positive tolerance in
Field 10 specifies that an absolute difference is used to test if the numerical
value in Field 8 has been found while a negative tolerance specifies a
relative difference. The DLL reads numerical values in the specified row
and in all columns starting with the first column of data until the specified
value is found. The data entry at this location is then used in the PUT or

GET command.

Field 11: This field contains the number of rows to be used for data processing; this allows entering or
reading a row vector with a single command. For example, if a PUT command has the number n entered in

Field 2 and the number m in Field 11, inargs(n) will be written into the data file row and column identified

by the information in Fields 3 – 10. The values inargs(n+1) through inargs(n+m–1) will be written into

the next (m–1) rows in the same column.

Field 12: This field contains the number of columns to be used for data processing; this allows entering a
column vector with a single command or, in conjunction with Field 11, entering a matrix of values with a
single command. For example, if a GET command has the number n in Field 2, the number m in Field 11 and

the number p in Field 12, outargs(n) will be read from the data file row and column identified by the

information in Fields 3 – 10. The values of outargs(n+1) through outargs(n+p–1) will be read from

the next (p–1) columns in the same row and the values of outargs(n+p) through outargs(n+2p–1)

will be read from the same columns in the next row down. This process will continue over m rows of data

until a total of m×p values have been read.

Field 13: This field can be used to enter an optional comment that is not read by the DLL or used by
GoldSim.

CBP Code Integration GoldSim DLL Interface

7

3.2 RPL

The RPL command can be used to replace entire lines in an existing input file. GoldSim passes double

precision numerical values in the inargs() and outargs() arrays. The only exception to this is that the

external function can return an error message to GoldSim in the outargs() array using a special function
supplied by GoldSim Technology Group (GTG). Passing only numerical values can be restrictive because
input files may contain text strings with, for example, file names, and it may be desirable to change these file
names for different simulations. As a simple work around to this limitation, the DLL interface was given the
capability of replacing entire lines of input with text using the RPL command. Within the RPL command
block, the entry in Field 2 identifies the line of input that will be replaced. The text starting in Field 3 will be
used to replace the current entry in the line.

3.3 EXE

The EXE command block specifies DOS commands to be executed by the Windows operating system. The
feature is primarily used to give the name and relative location of the file (or files) that must be run to execute
the external code. This command could be used to run a batch file or an executable. Any arguments that must
be passed to the executable are included in the command. Additional commands can be specified to perform
other operations, such as copying or renaming output files.

3.4 SUP

The SUP command writes the specified text to the specified file. The file name must be provided in the second

column on the same line as the SUP command. The file is created if not found, or overwritten if existing. The
keyword can be used to create a “super” file of file names and instructions that can then be accessed by the
external application.

3.5 LOG

The LOG command is used to give the name of a file where arrays of the GoldSim input and output data used
in the simulation will be written in XML format. The log file name must be provided in the second column on
the same line as the LOG command. The realization number is written to the log file followed by an array of
the input data and an array of the output data.

4 EXAMPLES

4.1 PUT/GET Example

To test whether the various options available to PUT and GET values from the input and output arrays function

correctly, a simple test run was made using the DLL.dat file shown in Figure 2 with the starting test.inp

file shown in Figure 3. The PUT instructions should replace the values in test.inp along a diagonal from
value (2,2) to value (6,6) with zeros. The test was made by running the GoldSim model intended for use with
the STADIUM code with this DLL.dat instruction file. As the modified test.inp file in Figure 4 shows

CBP Code Integration GoldSim DLL Interface

8

the PUT operations worked correctly. The GET instructions were designed to read these zero values.

Examination of the test.xml file (not provided) showed that the first six output arguments returned from the
DLL to GoldSim were zero as intended.

CBP Code Integration GoldSim DLL Interface

9

Figure 2. DLL.dat file used to test DLL PUT and GET options

 !

!

#
2

#
3

#
4

#
5

#
6

#
7

#
8

#
9

#
1
0

#
1
1

#
1
2

#
1
3

(
c
o
m
m
e
n
t
)

!
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

P
U
T

t
e
s
t
.
i
n
p

w
h
i
t
e

i
g
n
o
r
e

2

r
o
w

2

f
i
e
l
d

2

1

1

"
r
o
w
"

+

"
f
i
e
l
d
"

o
p
t
i
o
n

2

r
e
c
o
r
d

3

c
o
l

3

1

1

"
r
e
c
o
r
d
"

+

"
c
o
l
"

o
p
t
i
o
n

2

l
a
b
e
l

l
i
n
e
3

1

h
e
a
d
i
n
g
 f
i
e
l
d
4

1

1

1

"
l
a
b
e
l
"

+

"
h
e
a
d
i
n
g
"

o
p
t
i
o
n

2

v
a
l
u
e

1
2
3

2

+
0
.
0
1

v
a
l
u
e

-
4
4
4

2

+
0
.
0
1

1

1

"
v
a
l
u
e
"

o
p
t
i
o
n

2

v
a
l
u
e

4
5
6

2

-
0
.
0
1

v
a
l
u
e

-
5
5
5

2

-
0
.
0
1

1

1

"
v
a
l
u
e
"

o
p
t
i
o
n

2

s
t
r
i
n
g

m
y
S
t
r

c
o
l

7

1

1

"
s
t
r
i
n
g
"

o
p
t
i
o
n

E
N
D

!
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

G
E
T

t
e
s
t
.
i
n
p

w
h
i
t
e

i
g
n
o
r
e

1

r
o
w

2

f
i
e
l
d

2

1

1

"
r
o
w
"

+

"
f
i
e
l
d
"

o
p
t
i
o
n

2

r
e
c
o
r
d

3

c
o
l

3

1

1

"
r
e
c
o
r
d
"

+

"
c
o
l
"

o
p
t
i
o
n

3

l
a
b
e
l

l
i
n
e
3

1

h
e
a
d
i
n
g
 f
i
e
l
d
4

1

1

1

"
l
a
b
e
l
"

+

"
h
e
a
d
i
n
g
"

o
p
t
i
o
n

4

v
a
l
u
e

1
2
3

2

+
0
.
0
1

v
a
l
u
e

-
4
4
4

2

+
0
.
0
1

1

1

"
v
a
l
u
e
"

o
p
t
i
o
n

5

v
a
l
u
e

4
5
6

2

-
0
.
0
1

v
a
l
u
e

-
5
5
5

2

-
0
.
0
1

1

1

"
v
a
l
u
e
"

o
p
t
i
o
n

6

s
t
r
i
n
g

m
y
S
t
r

c
o
l

7

1

1

"
s
t
r
i
n
g
"

o
p
t
i
o
n

E
N
D

!
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

L
O
G

t
e
s
t
.
x
m
l

E
N
D

!
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

CBP Code Integration GoldSim DLL Interface

10

!field1 field2 field3 field4 field5 field6 field7
line1 -111 -222 -333 -444 -555 -666
line2 -11 -22 -33 -44 -55 -66
line3 -999 -999 -999 -999 -999 -999
line4 123 -999 -999 -999 -999 -999
line5 456 -999 -999 -999 -999 -999
line6 -999 -999 -999 myStr -999 -999
line7 -999 -999 -999 -999 -999 -999
line8 -999 -999 -999 -999 -999 -999

Figure 3. Input file used to test DLL PUT and GET options

!field1 field2 field3 field4 field5 field6 field7
line1 0 -222 -333 -444 -555 -666
line2 -11 0 -33 -44 -55 -66
line3 -999 -999 0 -999 -999 -999
line4 123 -999 -999 0 -999 -999
line5 456 -999 -999 -999 0 -999
line6 -999 -999 -999 myStr -999 0
line7 -999 -999 -999 -999 -999 -999
line8 -999 -999 -999 -999 -999 -999

Figure 4. Modified input file after running GoldSim

CBP Code Integration GoldSim DLL Interface

11

4.2 STADIUM Example

This example uses the DLL.dat file shown in Figure 1 to make a one year run of the STADIUM code with
three realizations. Because the DLL replaces values in the input file, the user must supply a template file for
the DLL to manipulate. As shown in Section 3.1, the DLL provides some flexibility for locating data within
the template file. However, the user must either know the exact location of input parameters within the input
file or know the basic structure of the input so that the methods described in Section 3.1 can be applied. The
example DLL.dat file in Figure 1 locates data by giving specific row and column positions. The template

file used for the STADIUM code is shown in Figure 5. After the DLL executes the RPL and PUT commands
shown in Figure 1, the modified template file that was used as the actual input file for STADIUM is shown in
Figure 6. The current version of the model did not try to replace the entire input file; the values actually
replaced by the DLL are highlighted in Figure 6.

The GET command shown in Figure 1 was used to retrieve concentrations of the 11 chemicals and nine

minerals used by the STADIUM code at each of the 101 node locations at time one year. The GET command
can be interpreted as follows:

Look for a value of 1.0 in the first column of output data with a relative tolerance of 0.1 year.
When this value is found, starting in column 4, retrieve 101 rows of data over 11 columns,
then, starting in column 18, retrieve 101 rows of data over 9 columns. The first block of data
retrieved is placed in the outargs() array starting with element one. The second block of

data is placed in the outargs() array starting with element 3312.

The outargs() array that returns output to GoldSim has been dimensioned large enough to return
concentrations at one time step for a mesh as large as 301 nodes. The gap between the two blocks of output
data retrieved in this example allows blank spaces for the data that would have appeared in nodes 102 through
301.

CBP Code Integration GoldSim DLL Interface

12

Figure 5. Template input file for STADIUM

COOR
20cm-50cm-mesh01.cor
ELEM
20cm-50cm-mesh01.ele
RESO
 NUMBER_NUM_PARAM. 14

 integration_pts 2
 tolerance 1.0e-3
 itermax 30
 cartesian_axi 1.0
 Duration_years 10000.0
 Init_time_step_sec 5000.0
 f_sat 3.0
 Tangential_matrix 0.0
 damage 1.0
 physical_cl 0.0
 CO2_level_% 0.0
 Max_time_step_sec 4320000.0
 Step_Adapt_Factor 1.5
 Step_Adapt_Crit 5e-3

PREL
 N_PREL_GROUP 2
 N_PREL 18

 temperature 23.0 23.0
 W/B 0.38 0.595
 Binder 405.0 930.0
 aggregates 1659.0 0.0
 Binder_density 2885.0 2603.5
 Porosity 0.135 0.65
 Permeability 18.0e-22 4000.0e-22
 oh_diff_coef 1.40e-11 7.5e-11
 Isotherm_b -25.9280 -6.4651
 Isotherm_c 0.4285 1.7825
 Relative_perm 18.0 18.0
 init_hydrat 28.0 28.0
 tref_meas 28.0 28.0
 hydrat_a 0.8 0.3
 hydrat_alpha 0.015 0.003
 k_thermal 2.00 2.00
 spec_heat 1000.0 1000.0
 ex_rate_CO2 1.0e-5 1.0e-5

CHIM
 NUMBER_CHEM_PARAM. 3
 m_max 5
 print_level 1
 iter_max 1000

 Nions 11
 Nsolides 9

CBP Code Integration GoldSim DLL Interface

13

Figure 5. Template input file for STADIUM (Cont’d)

 Database_file CHM-DB-STADIUM.txt

 OH
 Na
 K
 SO4
 Ca
 Al(OH)4
 Cl
 H2SiO4
 CO3
 NO3
 NO2

 Portlandite
 CaH2SiO4
 Ettringite
 Monosulfate
 C4AH13
 Thaumasite
 Calcite
 Monocarboaluminate
 Gypsum

COND
 Nb_cycles 1
 Sequences_days 0 365.0

 OH 1 0.0 1 0.0 0.0 0.0
 Na 1 0.0 1 0.0 0.0 0.0
 K 1 0.0 1 0.0 0.0 0.0
 SO4 1 0.0 1 0.0 0.0 0.0
 Ca 1 0.0 1 0.0 0.0 0.0
 Al(OH)4 1 0.0 1 0.0 0.0 0.0
 Cl 1 0.0 1 0.0 0.0 0.0
 H2SiO4 1 0.0 1 0.0 0.0 0.0
 CO3 1 0.0 1 0.0 0.0 0.0
 NO3 1 0.0 1 0.0 0.0 0.0
 NO2 1 0.0 1 0.0 0.0 0.0
 Humidity 2 0.0 1 0.0 0.0 1.0
 101 0.0 0.0 1.0
 Potential 1 0.0 1 0.0 0.0 0.0
 Temperature 0

CONV
 Nb_cycles 1
 Sequences_days 0 365

 OH 0
 Na 0
 K 0
 SO4 0
 Ca 0
 Al(OH)4 0

CBP Code Integration GoldSim DLL Interface

14

Figure 5. Template input file for STADIUM (Cont’d)

 Cl 0
 H2SiO4 0
 CO3 0
 NO3 0
 NO2 0
 Humidity 0
 Potential 0
 Temperature 2 0.0 1 365.0 0.0 5.0 15.0
 101 365.0 0.0 5.0 15.0
INIT
 external_file 0

 OH 400.0 670.08
 Na 282.1 4420.0
 K 138.0 120.0
 SO4 8.0 130.7
 Ca 0.5 0.41
 Al(OH)4 0.1 0.14
 Cl 5.0 9.0
 H2SiO4 0.0 9.7
 CO3 0.0 2.9
 NO3 0.0 2000.0
 NO2 0.0 1575.0
 Rel_Humidity 1.0 1.0
 Potential 0.0 0.0
 Temperature 23.0 23.0

 Portlandite 13.6 41.9
 CaH2SiO4 37.9 103.3
 Ettringite 0.0 28.6
 Monosulfate 19.4 0.0
 C4AH13 14.8 0.0
 Thaumasite 0.0 0.0
 Calcite 0.0 4.8
 Monocarboaluminate 0.0 11.0
 Gypsum 0.0 0.0
IMPR
 number_print_times 31
 print_times
 1.0
 10.0
 20.0
 50.0
 75.0
 100.0
 200.0
 300.0
 400.0
 500.0
 600.0
 700.0
 800.0
 900.0
 1000.0
 1500.0

CBP Code Integration GoldSim DLL Interface

15

Figure 5. Template input file for STADIUM (Cont’d)

 2000.0
 2500.0
 3000.0
 4500.0
 5000.0
 5500.0
 6000.0
 6500.0
 7000.0
 7500.0
 8000.0
 8500.0
 9000.0
 9500.0
 10000.0
 print_before_chm 0
 level_1_2 1
 imp_flux_0_1_2 0
STOP

CBP Code Integration GoldSim DLL Interface

16

Figure 6. STADIUM input file after execution of PUT and RPL commands

COOR
..\..\Stadium\20cm-50cm-mesh01.cor
ELEM
..\..\Stadium\20cm-50cm-mesh01.ele
RESO
 NUMBER_NUM_PARAM. 14

 integration_pts 2
 tolerance 1.0e-3
 itermax 30
 cartesian_axi 1.0
 Duration_years 1
 Init_time_step_sec 5000
 f_sat 3.0
 Tangential_matrix 0.0
 damage 1.0
 physical_cl 0.0
 CO2_level_% 0.0
 Max_time_step_sec 4320000
 Step_Adapt_Factor 1.50000E+00
 Step_Adapt_Crit 5.00000E-03

PREL
 N_PREL_GROUP 2
 N_PREL 18

 temperature 23 23
 W/B 3.80000E-01 5.95000E-01
 Binder 405 930
 aggregates 1659 0
 Binder_density 2885 2.60350E+03
 Porosity 1.35000E-01 6.50000E-01
 Permeability 1.80000E-21 4.00000E-19
 oh_diff_coef 1.40000E-11 7.50000E-11
 Isotherm_b -2.59280E+01 -6.46510E+00
 Isotherm_c 4.28500E-01 1.78250E+00
 Relative_perm 18 18
 init_hydrat 28 28
 tref_meas 28 28
 hydrat_a 8.00000E-01 3.00000E-01
 hydrat_alpha 1.50000E-02 3.00000E-03
 k_thermal 2 2
 spec_heat 1000 1000
 ex_rate_CO2 1.0e-5 1.0e-5

CHIM
 NUMBER_CHEM_PARAM. 3
 m_max 5
 print_level 1
 iter_max 1000

 Nions 11
 Nsolides 9

CBP Code Integration GoldSim DLL Interface

17

Figure 6. STADIUM input file after execution of PUT and RPL commands (Cont’d)

 Database_file CHM-DB-STADIUM.txt

 OH
 Na
 K
 SO4
 Ca
 Al(OH)4
 Cl
 H2SiO4
 CO3
 NO3
 NO2

 Portlandite
 CaH2SiO4
 Ettringite
 Monosulfate
 C4AH13
 Thaumasite
 Calcite
 Monocarboaluminate
 Gypsum

COND
 Nb_cycles 1
 Sequences_days 0 365.0

 OH 1 0.0 1 0.0 0.0 0.0
 Na 1 0.0 1 0.0 0.0 0.0
 K 1 0.0 1 0.0 0.0 0.0
 SO4 1 0.0 1 0.0 0.0 0.0
 Ca 1 0.0 1 0.0 0.0 0.0
 Al(OH)4 1 0.0 1 0.0 0.0 0.0
 Cl 1 0.0 1 0.0 0.0 0.0
 H2SiO4 1 0.0 1 0.0 0.0 0.0
 CO3 1 0.0 1 0.0 0.0 0.0
 NO3 1 0.0 1 0.0 0.0 0.0
 NO2 1 0.0 1 0.0 0.0 0.0
 Humidity 2 0.0 1 0.0 0.0 1.0
 101 0.0 0.0 1.0
 Potential 1 0.0 1 0.0 0.0 0.0
 Temperature 0

CONV
 Nb_cycles 1
 Sequences_days 0 365

 OH 0
 Na 0
 K 0
 SO4 0
 Ca 0
 Al(OH)4 0

CBP Code Integration GoldSim DLL Interface

18

Figure 6. STADIUM input file after execution of PUT and RPL commands (Cont’d)

 Cl 0
 H2SiO4 0
 CO3 0
 NO3 0
 NO2 0
 Humidity 0
 Potential 0
 Temperature 2 0.0 1 365.0 0.0 5.0 15.0
 101 365.0 0.0 5.0 15.0
INIT
 external_file 0

 OH 400 6.70080E+02
 Na 2.82100E+02 4420
 K 138 120
 SO4 8 1.30700E+02
 Ca 5.00000E-01 4.10000E-01
 Al(OH)4 1.00000E-01 1.40000E-01
 Cl 5 9
 H2SiO4 0 9.70000E+00
 CO3 0 2.90000E+00
 NO3 0 2000
 NO2 0 1575
 Rel_Humidity 1.0 1.0
 Potential 0.0 0.0
 Temperature 23.0 23.0

 Portlandite 1.36000E+01 4.19000E+01
 CaH2SiO4 3.79000E+01 1.03300E+02
 Ettringite 0 2.86000E+01
 Monosulfate 1.94000E+01 0
 C4AH13 1.48000E+01 0
 Thaumasite 0 0
 Calcite 0 4.80000E+00
 Monocarboaluminate 0 11
 Gypsum 0 0
IMPR
 number_print_times 31
 print_times
 1.0
 10.0
 20.0
 50.0
 75.0
 100.0
 200.0
 300.0
 400.0
 500.0
 600.0
 700.0
 800.0
 900.0
 1000.0
 1500.0

CBP Code Integration GoldSim DLL Interface

19

Figure 6. STADIUM input file after execution of PUT and RPL commands (Cont’d)

5 REFERENCES

Brown, KG & Flach, GP 2009, CBP Software Summaries for LeachXS™/ORCHESTRA, STADIUM®,
THAMES, and GoldSim, CBP-TR-2009-003, Rev. 0, in Description of the Software and Integrating Platform,
Vanderbilt University/CRESP and Savannah River National Laboratory; Cementitious Barriers Partnership,
Nashville, TN and Aiken, SC. Available from: http://cementbarriers.org/reports.html.

GTG 2009, GoldSim User's Guide: Probabilistic Simulation Environment (Volume 2 of 2), Version 10.0
(February 2009) edn, 2 vols, GoldSim Technology Group, Issaquah, WA. Available from: www.goldsim.com
(license required) [September 1, 2009].

GTG 2010, GoldSim Dashboard Authoring Module User's Guide, Version 10.1 (January 2010) edn, GoldSim
Technology Group, Issaquah, WA. Available from: www.goldsim.com (license required).

 2000.0
 2500.0
 3000.0
 4500.0
 5000.0
 5500.0
 6000.0
 6500.0
 7000.0
 7500.0
 8000.0
 8500.0
 9000.0
 9500.0
 10000.0
 print_before_chm 0
 level_1_2 1
 imp_flux_0_1_2 0
STOP

CBP Code Integration GoldSim DLL Interface

20

APPENDIX A

LISTING AND EXPLANATION OF SUBROUTINES IN
GOLDSIM DLL INTERFACE

CBP Code Integration GoldSim DLL Interface

21

The DLL interface code was written in Fortran 90 and is modularized into the five files and 19 subroutines
listed below.

DllExternalCode_g95.f90
 DllExternalCode

Filework.f90
 ReadSup
 ReadRpl
 RunExe
 WriteLog
 GetOrPut
 ReadRow
 ReadCol
 ReadRecords

setDelim
checkField
Continuation

GSUtilities.f90
 gs_parameters
 copy_msg_to_outputs

Params.f90

putget.f90
 putField
 getField
 FindDelim
 IostatCheck
 logstring

Module Params contains a list of parameters common to all of the other modules. Params also contains the

two parameters NINPUTS and NOUTPUTS that give the number of inputs passed from GoldSim to the DLL and
the number of outputs passed back from GoldSim to the DLL. These values must agree with the number of
inputs and outputs defined in the GoldSim interface. The current version of the DLL has NINPUTS = 119

and NOUTPUTS = 6020. The number of inputs is exactly the number of values that GoldSim uses to set up a
STADIUM input file. The number of outputs is set large enough to hold data for 20 chemical and mineral
concentrations at up to 301 nodes. If fewer nodes are present, the output array can still be organized correctly
so that individual chemical and mineral species can be separated. However, it may be necessary to manually
change these parameter values and recompile the DLL for different simulations. Params also contains names

for the file containing the DLL instructions (generically referred to as DLL.dat in this document) and a log
file where information primarily of interest for debugging purposes is written. The user may wish to change
the default names of these files and recompile the DLL for specific simulations.

CBP Code Integration GoldSim DLL Interface

22

DLL SUBROUTINES

gs_parameters

This module specifies parameters used by GoldSim as a part of its DLL external interface. These parameters
indicate the phase of the simulation currently in progress and provide return codes to GoldSim indicating the
completion status of the external calculation. This subroutine was provided in Appendix C of the GoldSim
User’s Guide (Volume 2 GoldSim Technology Group, Version 10.0 February 2009 (GTG 2009)) and was used
without change.

Parameters used to indicate the phase of the simulation are:

INITIALIZE - Called after DLL is loaded and before each realization.

REPORT_VERSION - Called after DLL load to report the external function version number.

REPORT_ARGUMENTS - Called after DLL load to report the number of input and output arguments.

CALCULATE - Called during the simulation, each time the inputs change.

Parameters providing return codes to GoldSim are:

CLEANUP - Called before the DLL is unloaded.

SUCCESS – Call was completed successfully.

CLEANUP_NOW - Call was successful, but GoldSim should clean up and unload the DLL immediately.

FAILURE - Failure (no error information returned).

FAILURE_WITH_MSG – Failure, with DLL supplied error message available. Address of error message is
returned in the first element of the output arguments array.

INCREASE_MEMORY - Failed because the memory allocated for output arguments is too small. GoldSim will
increase the size of the output argument array and try again.

Subroutine to pass error message to GoldSim:

copy_msg_to_outputs (smsg, outargs)

smsg.................. String variable containing output message

outargs Array of output arguments returned to GoldSim

To help GoldSim users debug problems with DLL external functions, GoldSim allows users to send an error
message from the DLL back to GoldSim through the external element interface when the call to an external
function fails. The error message is displayed to the user in a pop-up dialog. The subroutine that performs this
task was provided by GoldSim in Appendix C of the User’s Guide (GTG 2009) and was used without change.
An example of the use of this subroutine is shown in Figure A-1.

CBP Code Integration GoldSim DLL Interface

23

Figure A-1. Outline of Subroutine DllExternalCode

subroutine DllExternalCode (method_id, status, inargs, outargs) BIND (C)

!Variable typing statements

select case (method_id)
 case (INITIALIZE)
 outargs(1) = NINPUTS
 outargs(2) = NOUTPUTS
 status = SUCCESS

 case (REPORT_VERSION)
 outargs(1) = VERSION
 status = SUCCESS

 case (REPORT_ARGUMENTS)
 outargs(1) = NINPUTS
 outargs(2) = NOUTPUTS
 status = SUCCESS

 case (CALCULATE)
 !Set working directory
 !Open file for logging processing of DLL instructions
 !Make subdirectory for run(s)
 !Make subdirectory for realization

 !Read in instructions
 call ReadRecords (datfile, instructions, nInstructions, msg)

 !Put inargs(*) into input file(s)
 call GetOrPut (streamlined, nStreamlined, subdir, "PUT", inargs, msg)

 !Create superfile per instructions
 call ReadSup (streamlined, nStreamlined)

 !Replace lines in input file per instructions
 call ReadRpl (streamlined, nStreamlined)

 !Execute command per instructions
 call RunExe (streamlined, nStreamlined)

 !Get outargs(*) from output file(s)
 call GetOrPut (streamlined, nStreamlined, subdir, "GET", outargs, msg)

 !Create logfile
 call WriteLog (streamlined, nStreamlined, inargs, outargs, irealization)

 !Report success
 status = SUCCESS

 case (CLEANUP)
 status = SUCCESS

 case default
 msg = "Unknown method ID requested"
 call copy_msg_to_outputs(msg, outargs)
 status = FAILURE_WITH_MSG

end select

end subroutine DllExternalCode

CBP Code Integration GoldSim DLL Interface

24

DllExternalCode (method_id, status, inargs, outargs)

method_id Parameter indicating phase of simulation

status Return code to GoldSim indicating status of external calculation

inargs Array of input arguments received from GoldSim

outargs Array of output arguments returned to GoldSim

This is the main subroutine called by the external link and, as such, controls the flow of the file processing.
The basic structure that must be followed for this subroutine was given in Appendix C of the GoldSim User’s
Guide (GTG 2009). An outline version of this subroutine with many of the detailed statements removed is
shown in Figure A-1. This outline illustrates the use of the parameters listed above and calls to some of the
primary subroutines in module Filework.

ReadSup (records, nRecords)

records Array of records in SUP block

nRecords Number of records in SUP block

Subroutine ReadSup reads the instructions in the SUP block and writes them into a “super” file that can then
be used by external applications. This feature would typically be used to provide a list of files and their
relative locations required by the external application.

ReadRpl (records, nRecords)

records Array of records in RPL block

nRecords Number of records in RPL block

Subroutine ReadRpl reads the instructions in the RPL block and replaces the identified lines in the input file
with the text supplied in the records. The first entry in each record is the number of the line in the file that is to
be replaced and the second entry in each record is the text string that will be placed in the file.

RunExe (records, nRecords)

records Array of records in EXE block

nRecords Number of records in EXE block

Subroutine ReadExe reads the instructions in the EXE block and makes system calls to execute each of the
commands listed within the block. More than one external application can be executed. Any command-line
arguments required by the executables must be included in the commands.

CBP Code Integration GoldSim DLL Interface

25

WriteLog (records, nRecords, inargs, outargs, irealization)

recordsArray of records in LOG block

nRecordsNumber of records in LOG block

inargs Array of input arguments received from GoldSim

outargsArray of output arguments returned to GoldSim

irealizationNumber of the realization being run

Subroutine WriteLog writes an XML formatted log file containing the realization number and the input and
output data used for this particular calculation.

GetOrPut (DLLdat, nDLLdat, subdir, action, args, msg)

DLLdat Array of records in GET or PUT block

nDLLdat Number of records in GET or PUT block

subdir For a PUT command, the name of the subdirectory where the input file is to be
written

action Key word GET or PUT

args.................. For PUT command inargs() array, for GET command outargs() array

msg Text containing error message

Subroutine GetOrPut implements the GET or PUT commands entered into the DLL.dat file. These
commands are described in Section 3.1.

ReadRow (vctr, iloc, array, nRecords, delim, msg)

vctr.................. Vector containing row specifications from Fields 3 – 6 in the PUT or GET command

iloc.................. Row number where PUT or GET command should start operating

array Array of records in file where PUT or GET command is operating

nRecords Number of records in file where PUT or GET command is operating

delim Delimiter used in file where PUT or GET command is operating

msg Text string containing error message

Subroutine ReadRow reads the row specifications in a PUT or GET command (see Section 3.1, Field 3 – Field
6) and uses the specifications to find the row within the data file where the command should start operating.

ReadCol (vctr, iloc, array, nRecords, delim, msg)

vctr.................. Vector containing column specifications from Fields 7 – 10 in the PUT or GET
command

iloc.................. Column number where PUT or GET command should start operating

array Array of records in file where PUT or GET command is operating

nRecords Number of records in file where PUT or GET command is operating

delim Delimiter used in file where PUT or GET command is operating

msg Text string containing error message

CBP Code Integration GoldSim DLL Interface

26

Subroutine ReadCol reads the column specifications in a PUT or GET command (see Section 3.1, Field 7 –
Field 10) and uses the specifications to find the column within the data file where the command should start
operating.

ReadRecords (file, array, nRecords, msg)

file.................. Text string with name of file to read

array Array of records in file

nRecords Number of records in file

msg Text string containing error message

Subroutine ReadRecords reads the data records in the specified file and returns an array containing the
records and the number of records found. If a read error is encountered, an error message is returned in text
string msg.

setDelim (field, delim, msg)

field Text string with name of file delimiter

delim Text character representing delimiter used in file

msg Text string containing error message

Subroutine setDelim reads the name of the delimiter specified in the DLL.dat file and returns the delimiter

character. If an incorrect delimiter name is encountered, an error message is returned in text string msg. Valid
delimiters are: colon, comma, semicolon, space, tab, and white (a combination of tabs and spaces).

Strip (records, nRecords, delim)

records Array of records

nRecords Number of records

delim Text character representing delimiter used in file

Subroutine Strip removes leading blank spaces from the set of records passed to the subroutine.

checkField (field, check, toler, found)

field Text string holding data that is to be checked

check Value that is being searched for

toler Tolerance allowed in identifying value

found Logical variable indicating whether the numerical value of the data in the field is
within the tolerance of the value of check.

Subroutine checkField implements the option to search for a numerical value to identify either the row or

column in a data file that a PUT or GET command is manipulating.

CBP Code Integration GoldSim DLL Interface

27

Continuation (nInput, input, continuationCharacter, nOutput, output)

nInput .. Number of records in original DLL.dat file

input .. Array of records in original DLL.dat file

continuationCharacter Text character used to identify a continuation line

nOutput Number of records in processed DLL.dat file

output .. Array of records in processed DLL.dat file

Subroutine Continuation collapses continued lines in the DLL.dat file into a single record, removes

comment lines, and returns an array of processed DLL.dat command lines.

putField (line, lineLength, nField, field, fieldLength, delim, new_line, lerr)

line..................... A text string containing the record to be modified

linelength Maximum length of the record

nField The field in the record to be replaced

field A text string containing the value to be inserted into the record

fieldlength Maximum length of the field

delim The delimiter used in the record

new_line Logical variable indicating if the record is a new line of the data file

lerr..................... Logical variable indicating an error in the PUT operation

Subroutine putField is called to insert a data value into a data record replacing the old value at the same
position. Only new lines need to have delimiter positions located. That is, when the subroutine is inserting
another value into the same line used previously it already knows the delimiter positions.

getField (line, lineLength, nField, field, fieldLength, delim, new_line)

line..................... A text string containing the record to be used

linelength Maximum length of the record

nField The field in the record to be extracted

field A text string containing the value extracted from the record

fieldlength Maximum length of the field

delim The delimiter used in the record

new_line Logical variable indicating if the record is a new line of the data file

Subroutine getField is called to extract a data value from a data record. Only new lines need to have
delimiter positions located. That is, when the subroutine is reading another value from the same line used
previously it already knows the delimiter positions.

FindDelim (line, linelength, delim, position)

line..................... A text string containing the record to be searched

linelength Maximum length of the record

CBP Code Integration GoldSim DLL Interface

28

delim The delimiter to search for

position An array of delimiter positions

Subroutine FindDelim is called to locate delimiter positions in a data record and return a list of the positions
to the calling routine.

IostatCheck (iostat_flag, exit_flag, msg)

iostat_flag Integer variable indicating status of read

exit_flag Logical variable signaling exit from read

msg Text string containing error message

Subroutine IostatCheck is called to check the status of an attempted read statement. If an error or end of

file is detected, exit_flag is set to false. If an error is detected, the error message

“***READ ERROR ***” is returned to the calling program.

logstring (iunt, label, value)

iunit Output unit where label and value will be written

label Text string containing label to be output

value Text string containing value to be written

Subroutine logstring is called to write a labeled value to an output file. This subroutine is used to write

messages to file DLL.log indicating the status of operations the DLL is performing to assist the user in
debugging applications.

ENERGY
U.S. DEPARTMENT OF

National Institute of
Standards and Technology

National Institute of
Standards and Technology

