OVERVIEW OF PERFORMANCE ASSESSMENTS AND MODELING OF CEMENTITIOUS BARRIERS

R. R. Seitz
Savannah River National Laboratory
Savannah River Nuclear Solutions, LLC
Savannah River Site
Aiken, SC 29808

K. G. Brown
Vanderbilt University, School of Engineering
Consortium for Risk Evaluation with Stakeholder Participation, III
Nashville, TN 37235

G. A. Taylor
Savannah River National Laboratory
Savannah River Nuclear Solutions, LLC
Savannah River Site
Aiken, SC 29808

D. W. Esh
U. S. Nuclear Regulatory Commission
Washington, DC 20555

May 2009
CBP-TR-2009-001, Rev.0
Overview of the U.S. Department of Energy and Nuclear Regulatory Commission Performance Assessment Approaches
Overview of the U.S. Department of Energy and Nuclear Regulatory Commission Performance Assessment Approaches

CONTENTS

LIST OF FIGURES ... II-vii
LIST OF TABLES ... II-viii
LIST OF ACRONYMS AND ABBREVIATIONS ... II-ix

1.0 INTRODUCTION .. II-1

2.0 REGULATORY DRIVERS ... II-3
 2.1 Performance Assessment Drivers .. II-3
 2.1.1 DOE Order 435.1 and Supporting Manuals: DOE LLW Disposal II-3
 2.1.1.1 Assessment Related Requirements ... II-3
 2.1.1.2 Guidance Related to Assessment of Cementitious Barriers II-4
 2.1.2 NRC 10 CFR Part 61: Commercial LLW Disposal II-4
 2.1.2.1 Assessment Related Requirements ... II-4
 2.1.2.2 Guidance Related to Assessment of Cementitious Barriers II-4
 2.1.3 NDAA Section 3116: HLW Tanks and Facility Closures II-5
 2.1.3.1 Assessment Related Requirements ... II-5
 2.1.3.2 Guidance Related to Assessment of Cementitious Barriers II-5
 2.1.4 NCRP Guidance on PA: LLW Disposal .. II-5
 2.1.4.1 Assessment Related Requirements ... II-5
 2.1.4.2 Guidance Related to Assessment of Cementitious Barriers II-5
 2.1.5 International Atomic Energy Agency .. II-6
 2.1.5.1 Assessment Related Requirements ... II-6
 2.1.5.2 Guidance Related to Assessment of Cementitious Barriers II-6
 2.2 Performance Assessment-Like Analysis Drivers .. II-6
 2.2.1 CERCLA ... II-8
 2.2.1.1 Assessment Related Requirements ... II-9
 2.2.1.2 Requirements Related to Assessment of Cementitious Barriers II-11
 2.2.2 RCRA ... II-11
 2.2.2.1 Assessment Related Requirements ... II-12
 2.2.2.2 Requirements Related to Assessment of Cementitious Barriers II-14
 2.2.3 National Environmental Policy Act (NEPA) ... II-14
 2.2.3.1 Assessment Related Requirements under NEPA II-15
 2.2.3.2 Requirements Related to Assessment of Cementitious Barriers under NEPA II-17
Overview of the U.S. Department of Energy and Nuclear Regulatory Commission Performance Assessment Approaches

CONTENTS (contd) Page No.

2.2.4 USNRC License Termination Rule, 10 CFR Part 20 Subpart EII-18
 2.2.4.1 Assessment Related Requirements..II-21
 2.2.4.2 Guidance for Cementitious Barriers...II-21

2.3 Spent Fuel Pools ..II-22

3.0 CEMENTITIOUS BARRIER PA MODELING APPROACHESII-25

3.1 Idaho Site ...II-26
 3.1.1 Tank Farm Facility Performance Assessment (INL)II-26
 3.1.1.1 Role of Cementitious Barriers and Processes Considered........II-26
 3.1.1.2 Parameter Assumptions and Conceptual ModelsII-27
 3.1.1.3 Relative Importance in Context of AssessmentII-29
 3.1.2 Radioactive Waste Management Complex (INL)II-29
 3.1.2.1 Role of Cementitious Barriers and Processes Considered..........II-29
 3.1.2.2 Parameter Assumptions and Conceptual ModelsII-30
 3.1.2.3 Relative Importance in Context of AssessmentII-30

3.2 Hanford Site ..II-31
 3.2.1 Integrated Disposal Facility ...II-31
 3.2.2.1 Role of Cementitious Barriers and Processes Considered........II-31
 3.2.2.2 Parameter Assumptions and Conceptual ModelsII-31
 3.2.2.3 Relative Importance in Context of AssessmentII-31

3.3 Oak Ridge National Laboratory ...II-31
 3.3.1 Solid Waste Storage Area 6 ...II-31
 3.3.1.1 Role of Cementitious Barriers and Processes Considered........II-31
 3.3.1.2 Parameter Assumptions and Conceptual ModelsII-32
 3.3.1.3 Relative Importance in Context of AssessmentII-35

3.4 Savannah River Site ...II-35
 3.4.1 F-Tank Farm ..II-35
 3.4.1.1 Role of Cementitious Barriers and Processes Considered........II-35
 3.4.1.2 Parameter Assumptions and Conceptual ModelsII-36
 3.4.1.3 Relative Importance in Context of AssessmentII-36
 3.4.2 E-Area Low-level Waste Facility ...II-36
 3.4.2.1 Role of Cementitious Barriers and Processes Considered........II-38
 3.4.2.2 Parameter Assumptions and Conceptual ModelsII-38
 3.4.2.3 Relative Importance in Context of AssessmentII-39
Overview of the U.S. Department of Energy and
Nuclear Regulatory Commission Performance Assessment Approaches

CONTENTS (contd)

<table>
<thead>
<tr>
<th>3.4.3 Commercial Nuclear Facilities</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.3.1 Overview</td>
<td>II-39</td>
</tr>
<tr>
<td>3.4.3.2 INL Tank Closure Review</td>
<td>II-40</td>
</tr>
<tr>
<td>3.4.3.3 Savannah River Site Saltstone Review</td>
<td>II-41</td>
</tr>
<tr>
<td>3.4.3.4 United State Nuclear Regulatory Commission Summary</td>
<td>II-42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.0 OTHER TYPES OF RISK ASSESSMENTS</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Idaho Sites</td>
<td>II-42</td>
</tr>
<tr>
<td>4.1.1 Non-Time Critical Removal Action for the Engineering Test Reactor under CERCLA</td>
<td>II-42</td>
</tr>
<tr>
<td>4.1.1.1 Role of Cementitious Barriers and Processes Considered</td>
<td>II-42</td>
</tr>
<tr>
<td>4.1.1.2 Important Assumptions and Conceptual Models</td>
<td>II-43</td>
</tr>
<tr>
<td>4.1.1.3 Relative Importance in Assessment</td>
<td>II-44</td>
</tr>
<tr>
<td>4.1.2 Radioactive Waste Management Complex under CERCLA</td>
<td>II-44</td>
</tr>
<tr>
<td>4.1.2.1 Role of Cementitious Barriers and Processes Considered</td>
<td>II-45</td>
</tr>
<tr>
<td>4.1.2.2 Important Assumptions and Conceptual Models</td>
<td>II-46</td>
</tr>
<tr>
<td>4.1.2.3 Relative Importance in Context of Assessment</td>
<td>II-46</td>
</tr>
<tr>
<td>4.1.3 Waste Calcining Facility Landfill Closure under RCRA and NEPA Environmental Assessment</td>
<td>II-46</td>
</tr>
<tr>
<td>4.1.3.1 Role of Cementitious Barriers and Processes Considered</td>
<td>II-47</td>
</tr>
<tr>
<td>4.1.3.2 Important Assumptions and Conceptual Models</td>
<td>II-47</td>
</tr>
<tr>
<td>4.1.3.3 Relative Importance in Context of Assessment</td>
<td>II-48</td>
</tr>
<tr>
<td>4.2 Savannah River Site</td>
<td>II-48</td>
</tr>
<tr>
<td>4.2.1 Tanks 17-F and 20-F Closure Actions under SCDHEC Industrial Wastewater Permits and NEPA Environmental Impact Statement</td>
<td>II-48</td>
</tr>
<tr>
<td>4.2.1.1 Role of Cementitious Barriers and Processes Considered</td>
<td>II-49</td>
</tr>
<tr>
<td>4.2.1.2 Important Assumptions and Conceptual Models</td>
<td>II-49</td>
</tr>
<tr>
<td>4.2.1.3 Relative Importance in Context of Assessment</td>
<td>II-50</td>
</tr>
<tr>
<td>4.2.2 P Reactor In-Situ Decommissioning under CERCLA</td>
<td>II-52</td>
</tr>
<tr>
<td>4.2.2.1 Role of Cementitious Barriers and Processes Considered</td>
<td>II-52</td>
</tr>
<tr>
<td>4.2.2.2 Important Assumptions and Conceptual Models</td>
<td>II-52</td>
</tr>
<tr>
<td>4.2.2.3 Relative Importance in Context of Assessment</td>
<td>II-54</td>
</tr>
<tr>
<td>4.3 Hanford Site</td>
<td>II-55</td>
</tr>
<tr>
<td>4.3.1 221-U Facility Remedial Actions under CERCLA and NEPA</td>
<td>II-55</td>
</tr>
<tr>
<td>4.3.1.1 Role of Cementitious Barriers and Processes Considered</td>
<td>II-55</td>
</tr>
<tr>
<td>4.3.1.2 Important Assumptions and Conceptual Models</td>
<td>II-56</td>
</tr>
<tr>
<td>4.3.1.3 Relative Importance in Context of Assessment</td>
<td>II-56</td>
</tr>
</tbody>
</table>
CONTENTS (contd)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.2 Tank Waste Remediation System Final EIS under NEPA</td>
<td>II-56</td>
</tr>
<tr>
<td>4.3.2.1 Role of Cementitious Barriers and Processes Considered</td>
<td>II-57</td>
</tr>
<tr>
<td>4.3.2.2 Important Assumptions and Conceptual Models</td>
<td>II-58</td>
</tr>
<tr>
<td>4.3.2.3 Relative Importance in Context of Assessment</td>
<td>II-59</td>
</tr>
<tr>
<td>4.4 Commercial Nuclear Facilities</td>
<td>II-59</td>
</tr>
<tr>
<td>4.4.1 Big Rock Point Decommissioning under the USNRC License</td>
<td>II-59</td>
</tr>
<tr>
<td>4.4.1.1 Role of Cementitious Barriers and Processes Considered</td>
<td>II-60</td>
</tr>
<tr>
<td>4.4.1.2 Important Assumptions and Conceptual Models</td>
<td>II-61</td>
</tr>
<tr>
<td>4.4.1.3 Relative Importance in Context of Assessment</td>
<td>II-62</td>
</tr>
<tr>
<td>4.4.2 Spent Fuel Pools</td>
<td>II-63</td>
</tr>
<tr>
<td>4.4.2.1 Containment Performance for Spent Nuclear Fuel Pools</td>
<td>II-65</td>
</tr>
<tr>
<td>5.0 SUMMARY OF MODELING APPROACHES</td>
<td>II-66</td>
</tr>
<tr>
<td>5.1 Overview of Regulations for PA-Like Analyses</td>
<td>II-66</td>
</tr>
<tr>
<td>5.2 Summary of Approaches Used for Cementitious Barriers</td>
<td>II-68</td>
</tr>
<tr>
<td>6.0 CONCLUSIONS AND MODELING/DATA NEEDS</td>
<td>II-74</td>
</tr>
<tr>
<td>7.0 REFERENCES</td>
<td>II-74</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.</td>
<td>Examples of Cementitious Barriers</td>
<td>II-2</td>
</tr>
<tr>
<td>Figure 2.</td>
<td>Example of Safety Assessment Methodology (after IAEA 2004)</td>
<td>II-7</td>
</tr>
<tr>
<td>Figure 3.</td>
<td>Overview of the Similarities between the CERCLA Remedial Action and RCRA Corrective Action (USDOE 1994a)</td>
<td>II-10</td>
</tr>
<tr>
<td>Figure 4.</td>
<td>The National Environmental Policy Act (NEPA) Process (CEQ 2007)</td>
<td>II-16</td>
</tr>
<tr>
<td>Figure 5.</td>
<td>The USNRC Decommissioning Process (after USNRC 2003a)</td>
<td>II-20</td>
</tr>
<tr>
<td>Figure 6.</td>
<td>Nevada Test Sites Area 5 Annual Precipitation and Potential Evapotranspiration</td>
<td>II-27</td>
</tr>
<tr>
<td>Figure 7.</td>
<td>Conceptualization of the Degradation Sequence (a) to (e) for a Closed Tank Farm Facility (USDOE-ID 2003)</td>
<td>II-28</td>
</tr>
<tr>
<td>Figure 8.</td>
<td>INL Tank WM-185 Vault Dome, Support Beams and Risers (USDOE-ID 2003)</td>
<td>II-28</td>
</tr>
<tr>
<td>Figure 9.</td>
<td>INL Radioactive Waste Management Complex Active LLW Disposal Facility within the Subsurface Disposal Area (May 2005)</td>
<td>II-30</td>
</tr>
<tr>
<td>Figure 10.</td>
<td>Overall Logic Flow in the Oak Ridge PA SOURCE Computer Codes (ORNL 1997)</td>
<td>II-33</td>
</tr>
<tr>
<td>Figure 11.</td>
<td>Detailed Logic Flow for the SOURCE1 and SOURCE2 Computer Programs, (ORNL 1997)</td>
<td>II-34</td>
</tr>
<tr>
<td>Figure 12.</td>
<td>Type IIIA Primary and Secondary Carbon Steel Liners - Late Tank Construction</td>
<td>II-35</td>
</tr>
<tr>
<td>Figure 13.</td>
<td>Concrete Vault Around Steel Tank - Final Construction of a Type III/IIIA Tank</td>
<td>II-36</td>
</tr>
<tr>
<td>Figure 14.</td>
<td>Physical and Chemical Factors Related to SRS FTF Cementitious Barriers Stability (SRS 2008)</td>
<td>II-37</td>
</tr>
<tr>
<td>Figure 15.</td>
<td>SRS Type IIIA Tank Conceptual Model (SRS 2008)</td>
<td>II-37</td>
</tr>
<tr>
<td>Figure 16.</td>
<td>SRS FTF Cementitious Barriers Hydraulic Degradation Sequence (SRS 2008)</td>
<td>II-38</td>
</tr>
<tr>
<td>Figure 17.</td>
<td>Typical SRS CIG Trench</td>
<td>II-39</td>
</tr>
<tr>
<td>Figure 18.</td>
<td>Conceptual Model for the GWSCREEN Groundwater Model (McCarthy (2006))</td>
<td>II-45</td>
</tr>
<tr>
<td>Figure 19.</td>
<td>Conceptual Model for P Reactor Vessel (Council 2008)</td>
<td>II-53</td>
</tr>
<tr>
<td>Figure 20.</td>
<td>Tank Waste Remedial Alternatives (reproduced from USDOE-RL 1996)</td>
<td>II-58</td>
</tr>
<tr>
<td>Figure 21.</td>
<td>Boiling Water Reactor (BWR) Spent Fuel Cooling Systems (reproduced from Ibarra et al. 1997)</td>
<td>II-64</td>
</tr>
<tr>
<td>Figure 22.</td>
<td>Pressurized Water Reactor (PWR) Spent Fuel Cooling Systems (reproduced from Ibarra et al. 1997)</td>
<td>II-64</td>
</tr>
</tbody>
</table>
Overview of the U.S. Department of Energy and Nuclear Regulatory Commission Performance Assessment Approaches

LIST OF TABLES

Table 1. Final Environmental Impact Statements Related to the Savannah River, Hanford, and Idaho Sites .. II-19

Table 2. Summary of Selected Reports Related to Engineered Barriers (reproduced from USNRC 2003a) .. II-23

Table 3. Hanford IDF PA Effective Diffusion Coefficients for Cementitious Waste Forms (after Mann et. al 2005) .. II-32

Table 4. Properties Impacted by Failure (at 1,000 years) for the Tank 17-F Model (SRS 1997a) .. II-49

Table 5. Selected Radionuclide and Chemical Partition Coefficients (Kd) Used in the Tank 17-F Model (SRS 1997a) .. II-51

Table 6. MEPAS Groundwater Parameters for Vadose and Saturated Zones for the Tank 17-F Model (SRS 1997a) .. II-52

Table 7. Example Input Parameter Values for P Reactor Risk Assessment .. II-54

Table 8. Summary of Regulations Relevant for PA-Like Analyses .. II-67

Table 9. Summary of Examples of Assessments ... II-69
LIST OF ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEA</td>
<td>Atomic Energy Act</td>
</tr>
<tr>
<td>ALARA</td>
<td>as low as reasonably achievable</td>
</tr>
<tr>
<td>ARARs</td>
<td>Applicable or Relevant and Appropriate Requirements</td>
</tr>
<tr>
<td>ASAM</td>
<td>Coordinated Research Project on Application of Safety Assessment Methodologies for Near-Surface Waste Disposal Facilities</td>
</tr>
<tr>
<td>BWR</td>
<td>Boiling Water Reactor</td>
</tr>
<tr>
<td>C</td>
<td>carbon</td>
</tr>
<tr>
<td>CA</td>
<td>Composite Analysis</td>
</tr>
<tr>
<td>CATEX</td>
<td>CATegorical EXclusion</td>
</tr>
<tr>
<td>CBP</td>
<td>Cementitious Barriers Partnership</td>
</tr>
<tr>
<td>CDI</td>
<td>Canyon Disposition Initiative</td>
</tr>
<tr>
<td>CEQ</td>
<td>Council on Environmental Quality</td>
</tr>
<tr>
<td>CERCLA</td>
<td>Comprehensive Environmental Response, Compensation, and Liability Act</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>CIG</td>
<td>Components in Grout</td>
</tr>
<tr>
<td>CNWRA</td>
<td>Center for Nuclear Waste Regulatory Analyses</td>
</tr>
<tr>
<td>CRESP</td>
<td>Consortium for Risk Evaluation with Stakeholder Participation</td>
</tr>
<tr>
<td>CMI</td>
<td>Corrective Measures Implementation</td>
</tr>
<tr>
<td>CMS</td>
<td>Corrective Measures Study</td>
</tr>
<tr>
<td>CWI</td>
<td>CH2M-WG Idaho, LLC</td>
</tr>
<tr>
<td>D&D</td>
<td>Decontamination and Decommissioning</td>
</tr>
<tr>
<td>DCGL</td>
<td>Derived Concentration Guideline Limits</td>
</tr>
<tr>
<td>DP</td>
<td>Decommissioning Plan</td>
</tr>
<tr>
<td>DOE</td>
<td>United States Department of Energy</td>
</tr>
<tr>
<td>DST</td>
<td>double-shell tank</td>
</tr>
<tr>
<td>EA</td>
<td>Environmental Assessment</td>
</tr>
<tr>
<td>EIS</td>
<td>Environmental Impact Statement</td>
</tr>
<tr>
<td>ELLWF</td>
<td>E-area Low-level Waste Facility</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>ECN</td>
<td>Energy Research Center of the Netherlands</td>
</tr>
<tr>
<td>ETR</td>
<td>Engineering Test Reactor</td>
</tr>
<tr>
<td>FFTA</td>
<td>Federal Facility Agreement</td>
</tr>
<tr>
<td>FONSI</td>
<td>Finding of No Significant Impact</td>
</tr>
<tr>
<td>FTF</td>
<td>F-Tank Farm</td>
</tr>
<tr>
<td>GAO</td>
<td>Government Accounting Office</td>
</tr>
<tr>
<td>ha</td>
<td>hectare</td>
</tr>
<tr>
<td>HLW</td>
<td>high-level waste</td>
</tr>
<tr>
<td>HSRAM</td>
<td>Hanford Site Risk Assessment Methodology</td>
</tr>
<tr>
<td>HSWA</td>
<td>Hazardous and Solid Waste Amendment</td>
</tr>
<tr>
<td>HWMA</td>
<td>Hazardous Waste Management Act</td>
</tr>
<tr>
<td>I</td>
<td>iodine</td>
</tr>
<tr>
<td>IAEA</td>
<td>International Atomic Energy Agency</td>
</tr>
<tr>
<td>ICDF</td>
<td>INEEL CERCLA Disposal Facility</td>
</tr>
<tr>
<td>IDEQ</td>
<td>Idaho Division of Environmental Quality</td>
</tr>
<tr>
<td>IDF</td>
<td>Integrated Disposal Facility</td>
</tr>
<tr>
<td>ILV</td>
<td>Intermediate Level Vault</td>
</tr>
</tbody>
</table>
LIST OF ACRONYMS AND ABBREVIATIONS (contd)

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INEEL</td>
<td>Idaho National Engineering and Environmental Laboratory</td>
</tr>
<tr>
<td>INEL</td>
<td>Idaho National Engineering Laboratory</td>
</tr>
<tr>
<td>INL</td>
<td>Idaho National Laboratory</td>
</tr>
<tr>
<td>INTSEC</td>
<td>Idaho Nuclear Technology and Engineering Center</td>
</tr>
<tr>
<td>ISAM</td>
<td>Coordinated Research Project on Improvement of Safety Assessment Methodologies for Near Surface Waste Disposal Facilities</td>
</tr>
<tr>
<td>K<sub>d</sub></td>
<td>distribution coefficient</td>
</tr>
<tr>
<td>LANL</td>
<td>Los Alamos National Laboratory</td>
</tr>
<tr>
<td>LAWV</td>
<td>Low-activity Waste Vault</td>
</tr>
<tr>
<td>LLW</td>
<td>low-level waste</td>
</tr>
<tr>
<td>LOCA</td>
<td>loss-of-coolant accidents</td>
</tr>
<tr>
<td>LTP</td>
<td>license termination plan</td>
</tr>
<tr>
<td>LTR</td>
<td>License Termination Rule</td>
</tr>
<tr>
<td>MCL</td>
<td>maximum contaminant level</td>
</tr>
<tr>
<td>MEPAS</td>
<td>Multimedia Environmental Pollutant Assessment System</td>
</tr>
<tr>
<td>mrem</td>
<td>millirem</td>
</tr>
<tr>
<td>MWMF</td>
<td>Mixed Waste Management Facility</td>
</tr>
<tr>
<td>NCP</td>
<td>National Contingency Plan</td>
</tr>
<tr>
<td>NCRP</td>
<td>National Council on Radiation Protection and Measurements</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>Np</td>
<td>neptunium</td>
</tr>
<tr>
<td>NPL</td>
<td>National Priorities List</td>
</tr>
<tr>
<td>NRC</td>
<td>United States Nuclear Regulatory Commission</td>
</tr>
<tr>
<td>NRCDA</td>
<td>Naval Reactor Component Disposal Area</td>
</tr>
<tr>
<td>NSARS</td>
<td>Safety assessment of near surface radioactive waste disposal facilities</td>
</tr>
<tr>
<td>NTS</td>
<td>Nevada Test Site</td>
</tr>
<tr>
<td>NUREG</td>
<td>Nuclear Regulatory Commission Regulation</td>
</tr>
<tr>
<td>NWPA</td>
<td>Nuclear Waste Policy Act</td>
</tr>
<tr>
<td>OMB</td>
<td>U.S. Office of Management and Budget</td>
</tr>
<tr>
<td>ORNL</td>
<td>Oak Ridge National Laboratory</td>
</tr>
<tr>
<td>PA</td>
<td>Performance Assessment</td>
</tr>
<tr>
<td>PET</td>
<td>potential evapotranspiration</td>
</tr>
<tr>
<td>PRG</td>
<td>preliminary remediation goal</td>
</tr>
<tr>
<td>PSDAR</td>
<td>Post-Shutdown Decommissioning Activities Report</td>
</tr>
<tr>
<td>Pu</td>
<td>plutonium</td>
</tr>
<tr>
<td>PUREX</td>
<td>Plutonium Recovery and Extraction</td>
</tr>
<tr>
<td>PWR</td>
<td>Pressurized Water Reactor</td>
</tr>
<tr>
<td>RAGS</td>
<td>Risk Assessment Guidance for Superfund</td>
</tr>
<tr>
<td>RCRA</td>
<td>Resource Conservation and Recovery Act</td>
</tr>
<tr>
<td>RDs/RAs</td>
<td>remedial designs/remedial actions</td>
</tr>
<tr>
<td>REM</td>
<td>mrem</td>
</tr>
<tr>
<td>RESRAD</td>
<td>RESidual RADioactivity</td>
</tr>
<tr>
<td>RFA/RFI</td>
<td>RCRA Facility Assessment/RCRA Facility Investigation</td>
</tr>
</tbody>
</table>
LIST OF ACRONYMS AND ABBREVIATIONS (contd)

RIs/FSs Remedial Investigation/Feasibility Study
ROD Record of Decision
RAI reactor vessel assembly and internals
RWMC Radioactive Waste Management Complex
SARA Superfund Amendments and Reauthorization Acts
SCDHEC South Carolina Department of Health and Environmental Control
SDA Subsurface Disposal Area
Sr Strontium
SER Safety Evaluation Report
SRNL Savannah River National Laboratory
SWMU solid waste management unit
SWSA Solid Waste Storage Area
Tc Technetium
TEDE total expected dose equivalent
TFF Tank Farm Facility
TBP tributyl phosphate
TRU transuranic
TSDF treatment, storage, and disposal facility
TWRS Tank Waste Remediation System
USDOE United States Department of Energy
USEPA United States Environmental Protection Agency
USGAO United State Government Accounting Office
USNRC United States Nuclear Regulatory Commission
UST underground storage tank
WCF Waste Calcining Facility
WSRC Washington Savannah River Company
Overview of the U.S. Department of Energy and
Nuclear Regulatory Commission Performance Assessment Approaches
Overview of Performance Assessments and Modeling of Cementitious Barriers

R. R. Seitz
Savannah River National Laboratory
Savannah River Nuclear Solutions, LLC
Savannah River Site
Aiken, SC 29808

K. G. Brown
Vanderbilt University, School of Engineering
Consortium for Risk Evaluation with Stakeholder Participation, III
Nashville, TN 37235

G. A. Taylor
Savannah River National Laboratory
Savannah River Nuclear Solutions, LLC
Savannah River Site
Aiken, SC 29808

D. W. Esh
U. S. Nuclear Regulatory Commission
Washington, DC 20555

1.0 INTRODUCTION

Performance assessments (PA) and PA-like analyses are conducted to provide an assessment of the potential post-closure effects associated with a waste management activity. The results of such an assessment are used as part of the basis for decision-making regarding a specific waste management action. Although there may be different goals and fundamental approaches to conducting such assessments for waste management activities that need to be maintained, there are a number of similarities. For example, assessments for waste forms from waste processing may have different goals than soil and groundwater assessments for remediation, which may also be somewhat different than decommissioning assessments. However, there are similarities associated with specific aspects of the different approaches that can and should be shared from the perspective of consistency and continuous improvement.

The most rigorous consideration of cementitious barriers has traditionally been associated with disposal of low-level radioactive waste. More recently, as more difficult facility decommissionings and closures and remediation activities are being undertaken, there has been an increased need to be able to take credit for cementitious barriers as part of a broader range of waste management activities. Figure 1 illustrates examples of cementitious barriers encountered in radioactive waste management and disposal activities. This expanded use has highlighted two issues: the need for improved methods for assessing cementitious barriers and the need for improved sharing of information.
between analysts conducting assessments in support of these different regulatory activities. Approaches for uncertainty analyses are an important aspect of any PA exercise and are summarized in a separate chapter of this report.

Cementitious materials are often used as engineered barriers in waste disposal and other facilities as a means to contain the radioactive waste and/or to limit the migration of radionuclides into the accessible environment. One common form of barrier is the cementitious material as the waste form, that is, the waste is intimately mingled with the cementitious material. Another common form is that of containment, something intended to isolate the waste from the environment, such as a container or a vault. In this form, the waste is segregated from the cementitious material. In either case, the release of radioactive waste can be controlled as a function of the rate at which the cementitious material is assumed to degrade and lose its effectiveness as a chemical and physical barrier.

“Degrade” is often used synonymously with “aging”. The aging of the cementitious barrier is the parameter of interest in the development of a PA, and in most cases the barrier’s performance is seen to decrease with time, hence the use of “degrade”. There are two aspects to be considered in aging, the effect on hydraulic properties and the effect on chemical properties. While these two phenomena are in actuality closely coupled, in the PA arena they are often modeled independently. In order to take credit for the benefits of cementitious materials in a PA or PA-like analysis, it is necessary to have models and data sufficient to stand up to external review. This concern has often resulted in overly-conservative assumptions being made regarding barrier degradation. Although expedient in the short-term, such approaches could result in decisions being made that are more costly or over-restrictive over the long term.

This document is primarily directed at an overview of PA and PA-like analyses used by the US Department of Energy (USDOE) with some examples from the U.S. Nuclear Regulatory Commission (USNRC). The focus of this report is on summarizing the regulatory expectations and providing some illustrative example applications of PAs and PA-like analyses and their approaches for modeling cementitious materials both as waste forms and barriers for disposal facilities, remediation, and decommissioning.

Approaches are not described in detail, but enough information is provided to allow the reader to determine the type of credit that has been taken for cementitious materials and some perspective on processes considered. The reader is expected to consult the original references for detailed information about the models used. Furthermore, the intent of the document is not to pass judgment on the approaches that have been
used. The purpose is to survey approaches that have been used, identify similarities and differences and make recommendations regarding future needs.

2.0 REGULATORY DRIVERS

Performance assessments and PA-like analyses are conducted within a number of different regulatory frameworks. This diversity of regulatory environments often involves multiple different regulators and analysts conducting assessments for projects for a single site. In order to foster improved consistency and sharing of information, it is important to gain a fundamental understanding of the different regulatory environments that are involved and the analysis expectations within those regulatory environments. The following sections provide a basic overview of regulations associated with PAs and PA-like analyses and include discussion of any guidance or recommendations related to modeling of cementitious barriers.

2.1 Performance Assessment Drivers

Performance assessments, or safety assessments as they are termed internationally, are used as a means to quantitatively assess the potential post-closure effects on human health associated with a radioactive low-level waste disposal facility. PAs are also a means to make decisions with regard to siting, design, operation and development of closure plans for a disposal facility. Different regulators can be involved depending on the purpose for the facility. Generally speaking, post-closure performance of USDOE disposal facilities are regulated under USDOE Orders. USDOE Tank Closures in South Carolina and Idaho are regulated under Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005. Commercial disposal facilities are regulated in accordance with 10 CFR Part 61. The International Atomic Energy Agency (IAEA) publishes recommended standards and guidelines that are not mandatory, but are used as a point of comparison for U.S. activities.

2.1.1 DOE Order 435.1 and Supporting Manuals: DOE LLW Disposal

2.1.1.1 Assessment Related Requirements

The US Department of Energy’s (USDOE’s) authority to manage and regulate radioactive wastes is promulgated in the Atomic Energy Act (AEA) (AEA 1954) and the Nuclear Waste Policy Act (NWPA) (NAS 2006). DOE Order 435.1, Radioactive Waste Management (USDOE 2001) implements regulatory guidance for radioactive waste management activities conducted under DOE authority in accordance with the Atomic Energy Act. The Order itself is very short. Specific requirements related to implementation of the Order are documented in DOE Manual 435.1-1 (USDOE 2001b). Chapter IV of DOE M 435.1-1 includes the specific requirements related to siting, design, operation, and closure of disposal facilities for low-level radioactive waste that are regulated under DOE authority. Requirements related to performance assessments and composite analyses to be conducted in support of disposal facilities are addressed in Section IV.P.

The specific requirements in Section IV.P include performance objectives for all pathways, the air pathway, and for release of radon. The requirements related to performance assessments include the need to: (1) demonstrate compliance with the performance objectives, (2) establish limits on waste concentrations based on the intruder performance measures, (3) identify a baseline point of compliance, (4) conduct a sensitivity/uncertainty analysis, and (5) address requirements related to protection of water resources.

There is also a requirement to conduct a Composite Analysis that includes contributions from the disposal facility and any other collocated sources that could contribute to a composite dose to a member of the public. The composite analysis is used to ensure that the total dose associated with the facility and any other sources remains within levels allowed for exposure to the general public.
2.1.1.2 Guidance Related to Assessment of Cementitious Barriers

There are no specific requirements or recommendations in DOE O 435.1 or DOE M 435.1-1 regarding specific approaches to be used for the assessment of cementitious barriers. Thus, there is no prescribed approach. There is guidance in Chapter IV of DOE Guide 435.1-1 (USDOE 1999) that suggests that credit may be taken for use of intruder barriers and durable waste forms when considering the potential for intrusion into specific wastes. Thus, it is possible to develop barriers or waste forms involving cementitious materials that could serve as a means to delay the consideration of intrusion while the integrity of the barrier or waste form is intact. There is no specific discussion of how to consider cementitious materials in assessments for the groundwater or air pathways.

2.1.2 NRC 10 CFR Part 61: Commercial LLW Disposal

2.1.2.1 Assessment Related Requirements

NRC regulated LLW disposal facilities must comply with 10 CFR Part 61, which was promulgated in 1982. State regulators responsible for LLW disposal also use 10 CFR Part 61 as a basis for their regulations. Part 61 was intended to be applied to commercial LLW disposal facilities and includes requirements for the full lifecycle of a disposal facility. Specific requirements for protection of human health and inadvertent intruders are identified in Subpart C. These requirements form the basis for performance assessment calculations. The specific post closure requirements include dose limits for all pathways of exposure, protection from inadvertent intruders, and minimizing the need for active maintenance after closure.

2.1.2.2 Guidance Related to Assessment of Cementitious Barriers

There are no specific requirements or recommendations in Part 61 regarding specific approaches to be used for the assessment of cementitious barriers. It is specified in 61.7 that intruder barriers for Class C waste must have an effective life of at least 500 years. There is no specific discussion of how to consider cementitious materials in assessments for the groundwater or air pathways. However, there is guidance on assessing the stability of cementitious waste forms in the NRC Branch Technical Position on Waste Forms issued in January 1991 (USNRC 1991).

NRC Staff also published NUREG-1573, "A Performance Assessment Methodology for Low-Level Waste Disposal Facilities – Recommendations of NRC’s Performance Assessment Working Group" (USNRC 2000). This document includes NRC Staff perspectives regarding approaches for conducting performance assessment calculations. The NUREG is not a regulatory document and is not binding but does reflect NRC Staff perspectives on acceptable approaches and provides insight into what would be expected in a PA. The role of engineered barriers was flagged as one of five key issues in the document. In Section 3.2.2 of NUREG-1573, NRC Staff concluded that cementitious barriers can remain effective as intruder barriers for more than 500 years but any such assumptions must be defended on a case-by-case basis. Information must also be provided regarding the expected degraded condition of the barrier in respect of its designed physical and chemical functions.

Section 3.3.4 of NUREG-1573 includes more detailed suggestions for addressing performance of engineered barriers. The importance of addressing interactions between different materials is emphasized along with verification of construction quality. Section 3.3.4.4
includes additional information about addressing performance of engineered barriers. The emphasis of the suggestions is on general characteristics to be considered for intact, degrading and degraded performance (e.g., need to address cracking when considering hydraulic conductivity of a cementitious barrier).

2.1.3 NDAA Section 3116: HLW Tanks and Facility Closure

2.1.3.1 Assessment Related Requirements

Final disposition of HLW remaining after tank closure as LLW is regulated under the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (Section 3116) (NAS 2006). Section 3116 is very short and specifies that the performance objectives from Subtitle C of Part 61 must be met in order for the residues remaining at the time of closure activities to be managed as LLW. The NRC is assigned monitoring responsibilities to ensure that DOE has demonstrated that the objectives in Subtitle C will be met. These requirements were described in Section 2.1.2.1.

2.1.3.2 Guidance Related to Assessment of Cementitious Barriers

There is no specific guidance in Section 3116 for the consideration of cementitious barriers. However, NRC Staff prepared Draft Final NUREG-1854, "NRC Staff Guidance for Activities Related to U.S. Department of Energy Waste Determinations (USNRC 2007)". NUREG-1854 includes recommendations for reviews of PAs conducted for Section 3116 issues. Engineered barriers are addressed in Section 4.3.2 of NUREG-1854.

NUREG-1854 discusses considerations for reviews of modeling degradation of chemical performance of cementitious barriers. The importance of redox conditions and pH in terms of chemical performance are highlights, but it is also recommended to address the impacts of physical changes in a cementitious barrier and the associated impacts on changes in a barrier’s effectiveness from a chemical perspective. NRC Staff also refer to NUREG-1573 as a source of information and similar to NUREG-1573 re-emphasized the importance of considering interactions of different materials and also construction quality. Section 4.3.2.2 of NUREG-1854 includes a relatively detailed list of review considerations for assessments of engineered barriers.

2.1.4 NCRP Guidance on PA: LLW Disposal

In 2005, the National Council on Radiation Protection and Measurements (NCRP) completed NCRP Report number 152, "Performance Assessment of Near-Surface Facilities for Disposal of Low-Level Radioactive Waste" (NCRP 2005). This report includes relatively detailed discussions regarding approaches that can be used for specific aspects of modeling associated with PAs and PA-like analyses.

2.1.4.1 Assessment Related Requirements

The NCRP does not establish requirements for PAs. However, in their guidance document, the NCRP reviews concepts underlying PAs for LLW disposal and approaches to conducting such assessments. The document is intended to serve as a resource for those conducting PAs rather than as a requirement for how the modeling should be done.

2.1.4.2 Guidance Related to Assessment of Cementitious Barriers

The NCRP guidance includes a section on the performance of concrete barriers. This section focuses on water flow through concrete and mechanisms for degradation of concrete. The report addresses approaches that have been used in the past and some approaches that have been proposed for use. The document includes a number of references for more detailed information.
2.1.5 International Atomic Energy Agency

2.1.5.1 Assessment Related Requirements

The International Atomic Energy Agency (IAEA) publishes non-binding requirements related to radioactive waste safety as well as guidance for implementation. In 1999, the IAEA published a safety requirements document on Near Surface Disposal of Radioactive Waste and a safety guide on Safety Assessment for Near Surface Disposal of Radioactive Waste (IAEA 1999a and b, respectively). Internationally, the term Safety Assessment is used rather than PA.

The Safety Requirement is intended to establish requirements that must be met to ensure safety. The Safety Requirement sets out the dose objectives and identifies the need to conduct a safety assessment to demonstrate the ability of the facility to meet the dose objectives. There are also statements regarding credit for institutional controls and how to address human behavior in addition to a recommendation to use current human habits as the basis for projections of doses in the future.

The IAEA has sponsored several projects addressing Safety Assessment approaches. Although these projects are not intended to represent guidance or requirements, there have been specific ideas provided that can be considered good practices. For example, the project on Improvement of Safety Assessment Methodologies (ISAM) resulted in development of a basic methodology for the conduct of safety assessments that is often cited. See Figure 2.

2.1.5.2 Guidance Related to Assessment of Cementitious Barriers

The Safety Requirement described above is written at a high level intended to mimic the level of detail in a regulation, and thus, does not include any specific guidance regarding modeling of cementitious barriers. The IAEA Safety Guide on Safety Assessment discusses the need to address degradation of barriers and the associated changes in performance but does not include any specific guidance (IAEA 1999b).

2.2 Performance Assessment-Like Analysis Drivers

The cornerstones of the U.S. Department of Energy’s authority to manage and regulate radioactive wastes are the Atomic Energy Act (AEA) and Nuclear Waste Policy Act (NWPA). However, the AEA and NWPA are not the sole applicable federal statutes (NAS 2006). Additional legislation including the: Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); Resource Conservation and Recovery Act (RCRA); National Environmental Policy Act (NEPA); and correlative state and local laws also play critical regulatory roles. The relevant considerations under these additional statutes often go well beyond and adopt different practices than the AEA, NWPA, or Section 3116 of the NDAA. Perhaps more importantly, these other laws are not administered by the USDOE but instead by the USEPA and by the states (although often through delegated authority) (NAS 2006).

At the USDOE Savannah River Site (SRS) in Aiken, South Carolina, the two primary federal laws that drive cleanup are RCRA, which establishes a system for tracking and managing hazardous wastes from generation to disposal, and CERCLA, which addresses protection and cleanup from known waste sites (WSRC 2008). The SRS is satisfying the requirements of these laws via a Federal Facility Agreement (FFA) (WSRC 1993) between the USDOE, USEPA Region 4, and the South Carolina Department of Health and Environmental Control (SCDHEC). The SRS FFA, which is required under CERCLA, specifies how contamination or potential contamination will be addressed in accordance with both RCRA and CERCLA requirements. NEPA evaluations of alternative closure options often serve as inputs to the RCRA and CERCLA feasibility studies (Shedrow et al. 1993).
Sites were identified in 1986 within the Idaho Site that could pose unacceptable risks. DOE-ID entered into a Consent Order and Compliance Agreement (COCA) with the USEPA (USDOE-ID 1986) calling for remediation of active and inactive waste disposal sites under RCRA. In 1989, the USEPA added the Idaho National Engineering Laboratory (INEL) to the National Priorities List (NPL) under CERCLA. The Idaho Site Federal Facilities Agreement (USDOE-ID 1991), which superseded parts of the COCA, was adopted by USDOE-ID, USEPA, and the Idaho Division of Environmental Quality (IDEQ) in 1991 to implement the INEEL remedial actions under CERCLA. The Energy Secretary’s policy statement on NEPA stipulated that the USDOE will rely on the CERCLA process for review of actions to be taken under CERCLA (USDOE 1994a).

The USDOE, which operates the Hanford Site in Washington State, the USEPA, and the State of Washington Department of Ecology, signed a comprehensive cleanup and compliance agreement on May 15, 1989. The Hanford Federal Facility Agreement and Consent Order (or Tri-Party Agreement) is an agreement for achieving compliance with the CERCLA remedial action provisions and with the RCRA treatment, storage, and disposal unit regulations and corrective action provisions (USDOE 1989).

\[^{1}\text{From the Hanford Site Tri-Party Agreement available at http://www.hanford.gov/?page=91&parent=0 (accessed on February 27, 2009).}\]
Overview of the U.S. Department of Energy and Nuclear Regulatory Commission Performance Assessment Approaches

1989a). More specifically, the agreement 1) defines and ranks CERCLA and RCRA remedial commitments, 2) establishes responsibilities, 3) provides a basis for budgeting, and 4) indicates the goal of achieving full compliance and remediation. The agreement is legally binding and consists of two main parts: 1) the legal agreement itself which describes the roles, responsibilities and authority of the three agencies in the cleanup, compliance, and permitting processes and 2) the action plan to implement the cleanup and permitting efforts.

2.2.1 CERCLA

In 1990 the U.S. Congress enacted and the President signed into law the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) (Pub. L. 96-510) to identify and remediate sites where hazardous substances were or could be released into the environment (USDOE 1994b). The primary difference between CERCLA and RCRA is that CERCLA addresses uncontrolled releases of hazardous substances from facilities no longer in operation where contamination resulted from past practices; by contrast, RCRA focuses on prevention and remediation of releases from currently operating facilities.

CERCLA applies to all Federal agencies (USDOE 1994b). Section § 120(a)(1) states that each U.S. department, agency, and instrumentality shall be subject to, and comply with, the Act in the same manner and to the same extent, both procedurally and substantively, as any non-governmental entity. This intent for Federal agencies is continued in Section § 120(a)(2), which requires that all guidelines, rules, regulations, and criteria that are applicable to assessments, evaluations under the National Contingency Plan (NCP) (40 CFR Part 300), inclusion on the National Priorities List (NPL), or remedial actions shall also be applicable to facilities which are owned or operated by a U.S. department, agency, or instrumentality in the same manner and to the same extent as are applicable to other facilities. Section 120 also includes many requirements applicable only to Federal agencies including (USDOE 1994b):

- All potential Federal CERCLA sites be listed on the Federal Agency Hazardous Waste Compliance Docket.
- The responsible Federal agency completes a preliminary assessment for each site listed on the Docket.
- National Priorities List (NPL) listing decisions are made for those sites on the Docket. For Federal sites on the NPL, the responsible Federal agency, in consultation with the USEPA commence remedial investigation/feasibility study (RI/FS) within 6 months of NPL listing.
- The responsible Federal agency enter into an Inter-Agency Agreement with USEPA to conduct a remedial action within 180 days of the completion of the RI/FS.
- There is “substantial progress” in conducting the remedial action within 15 months of completion of the RI/FS.

Executive Order 12580 (EO12580 1987), Superfund Implementation, delegated the responsibility for CERCLA compliance at Federal facilities to each responsible official (i.e., Secretaries of Defense and Energy, and heads of other Executive Branch departments or agencies) (USDOE 1994b). The USDOE issued Order 5400.4 (USDOE 1989b), Comprehensive Environmental Response, Compensation, and Liability Act Requirements, establishing their policy regarding CERCLA compliance and included (USDOE 1994b):

2 Additionally, a "Community Relations Plan" describes how the general public will be informed and involved throughout the process.
3 CERCLA was amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA) (Pub. L. No. 99-499).
Overview of the U.S. Department of Energy and
Nuclear Regulatory Commission Performance Assessment Approaches

- Responding to releases of hazardous substances from USDOE facilities,
- Entering into Federal Facility Agreements (FFAs) with USEPA and the State at both NPL and non-NPL sites for the purpose of conducting RIs/FSs and remedial designs/remedial actions (RDs/RAs),
- Where appropriate, integrating RCRA Corrective Action with CERCLA remedial actions to ensure that the RCRA Corrective Action is not inconsistent with the NCP, and
- Conducting natural resource damage assessments as required for resources under USDOE trustees.

2.2.1.1 Assessment Related Requirements

The overview diagram in Figure 3 illustrates the similarities between the discovery, assessment, and action phases of the CERCLA remedial action and the RCRA corrective action (USDOE 1994b). As indicated in the diagram, there are a number of distinct assessments required under CERCLA including the preliminary site assessment and remedial investigation/feasibility study (RI/FS).

If a removal action is not required, then a preliminary site assessment is performed as outlined in the NCP (40 CFR Part 300) at § 300.420. USDOE first conducts a remedial preliminary assessment, which involves collecting demographic and physical characteristics. Those sites not posing sufficient risk to human health or the environment to warrant response are screened out. A remedial site inspection, a more detailed investigation of site conditions often employing sampling, may be required to more fully evaluate site conditions. The information obtained from the preliminary assessment and site inspection is used to score the site using the Hazard Ranking System (HRS) (40 CFR § 300.425) (USEPA 1994b). If the site scores 28.5 or more, it may be placed on the NPL, which requires that a RI/FS be performed.

The RI/FS (as described in 40 CFR § 300.430) is used to characterize site risks and evaluate potential remedial actions. Sufficiently detailed information must be collected during the RI (often in a staged process) to characterize site conditions, determine the nature and estimate the extent of contamination, evaluate risks posed by the site, and assess the performance of potential remedial options to make an informed risk management decision (USDOE 1994b). The FS involves developing, screening, and evaluating each proposed remedial option. The RI and FS phases are conducted concurrently and interactively as illustrated in Figure 3. The stages in the RI/FS assessment process that are of interest in terms conceptual and/or mathematical modeling include:

- RI/FS Scoping: Development of the conceptual model, which is a brief description of the site including suspected sources, contaminant pathways, and potential receptors to help identify decisions that must be made and deficiencies in existing information (USDOE 1987).
- RI: Site characterization is conducted to assess the threat a site poses to human health and the environment. The physical characteristics of the site are investigated and the sources of contamination and nature and extent of contamination are determined. Although these steps are primarily based on field activities, modeling activities may also play an important part.

1 The CERCLA process differs from RCRA in that the RCRA Corrective Action does not employ a site-ranking model (USDOE 1994a).
2 For sites that are not listed, USDOE’s policy is to remedy contaminated sites under CERCLA or, when appropriate, other authorities such as RCRA. Within 6 months of listing, USDOE policy further requires that the facility enter into an agreement with USEPA and the State to establish the requirements for conducting the RI/FS (USDOE 1994a).
3 One method for selecting acceptable remedial alternatives is based on a screening analysis using the effectiveness, implementability, and cost criteria per the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) 40 CFR 300).
4 This is another difference between CERCLA and RCRA—under RCRA, the RFI and CMS are not necessarily carried out concurrently (USDOE 1994a).
Overview of the U.S. Department of Energy and Nuclear Regulatory Commission Performance Assessment Approaches

- **RI:** Baseline Risk Assessment (BRA) is used to evaluate the potential threat to human health and the environment posed by the site, which is an important element in making an informed risk management decision. USEPA published a detailed guidance document on conducting baseline risk assessments entitled Risk Assessment Guidance for Superfund (RAGS) (USEPA 1989a; USEPA 1989b; USEPA 1991a; USEPA 1991b; USEPA 1998; USEPA 2004).

- **FS:** Development and screening of remedial alternatives is used to develop a preliminary list of remedial alternatives. Often modeling is needed to assess the practicality of proposed alternatives given site conditions, which is related to one of the screening criteria. This step is needed to reduce the possible alternatives to a preliminary list of remedial alternatives, which may include the “no action” alternative.

- **FS:** Detailed analysis of remedial alternatives consists of examining the information needed to make an informed remedial action selection. Each alternative is assessed against the nine evaluation criteria found in the NCP (40 CFR §300.430(e)(9) (iii)) and the results are then compared with the other alternatives.

The RI/FS process results in the selection of a remedial option, a proposed plan for implementation, and a Record of Decision (ROD). The signing of the final ROD signifies the completion of the RI/FS phases (USDOE 1994b).

2.2.1.2 Requirements Related to Assessment of Cementitious Barriers

There are no specific requirements or recommendations in CERCLA or the Superfund Amendments and Reauthorization Act (SARA) regarding the approaches that must be used for the assessment of cementitious barriers. However, there is information in the Risk Assessment Guidance for Superfund (RAGS) that takes credit for engineered barriers (which may include cementitious barriers) when estimating the external radiation exposure risk (USEPA 1991a).

The risk calculations in RAGS require estimation of exposure media concentrations either using sampling results, model predictions, or a combination (USEPA 1989a; USEPA 1989b; USEPA 1991). Credit may be taken for waste forms and barriers when projecting exposure media concentrations and risk into the future. However, this credit adds complexity and modeling uncertainty to the situation, which must be accounted for in the decision-making process (USEPA 1989a). One goal of the CBP is to help provide the basis for taking credit for this additional complexity and modeling uncertainty.

2.2.2 RCRA

The Resource Conservation and Recovery Act (RCRA) (Pub. L. 94-580) was signed into law in 1976. The purpose of RCRA is to protect human health and the environment via a comprehensive approach to hazardous and solid waste management at operating facilities (USDOE 1994b). This section focuses primarily on RCRA Subtitle C, entitled Hazardous Waste Management. This subtitle established: methods for classifying wastes as hazardous, a "cradle-to-grave" tracking system, standards for generators and transporters, a permitting program and standards for the design and operation of hazardous waste treatment, storage, or disposal facilities (TSDFs), and requirements for facilities to implement hazardous waste minimization programs.

8 Two other important subtitles are Subtitle D, Solid Waste Management, and Subtitle I, Underground Storage Tanks.
Overview of the U.S. Department of Energy and Nuclear Regulatory Commission Performance Assessment Approaches

- Regulation of small-quantity generators of hazardous waste,
- Requirements for the cleanup of releases of hazardous waste or hazardous waste constituents from solid waste management unit (SWMU) at TSDFS,
- Restrictions on land disposal of hazardous wastes, and
- Regulation of underground storage tanks (USTs) (Subtitle 1).

These elements were intended to help reduce the total quantity of hazardous waste generated and to help prevent releases of such wastes into the environment.

RCRA Section 6001 indicates that it applies to Federal agencies by stating:

- “Each department, agency, and instrumentality of the Federal Government (1) having jurisdiction over any solid waste management facility or disposal site, or (2) engaged in any activity resulting in, or which may result in, the disposal or management of solid waste or hazardous waste shall be subject to, and comply with, all Federal, State, interstate, and local requirements.”

Thus Federal agencies must comply with RCRA, including §3008(h) Corrective Action Orders, and the terms of permits issued under RCRA authority.

Federal agencies are also required to comply with RCRA under Executive Order 12088, Federal Compliance with Pollution Control Standards (EO12088 1978). Under this executive order, all Federal agencies must submit pollution control plans and request funding to implement and support pollution control activities. Under USDOE Order 5400.3, Hazardous and Radioactive Mixed Waste Program all USDOE facilities are also required to (USDOE 1989c):

- Comply with the requirements of RCRA and the AEA for the management of hazardous and radioactive mixed wastes generated by operations;
- Protect the environment and the safety of the public, DOE, and contractor employees through safe handling, transportation, treatment storage, and disposal of hazardous and radioactive mixed wastes generated through DOE operations; and
- Implement waste minimization procedures as specified in RCRA for hazardous and radioactive mixed wastes.

2.2.2.1 Assessment Related Requirements

In 1990 USEPA issued a proposed rule (55 FR 30798) establishing the procedural and technical requirements for conducting corrective actions under RCRA (USDOE 1994b)9. Through this proposed rule, EPA encouraged its use as guidance for conducting corrective actions by creating a four-phased approach: (1) RCRA Facility Assessment (RFA); (2) RCRA Facility Investigation (RFI); (3) Corrective Measures Study (CMS) and selection of the corrective measure; and (4) Corrective Measures Implementation (CMI).

The overview diagram in Figure 3 illustrates the similarities between the discovery, assessment, and action phases of the proposed RCRA corrective action approach and the CERCLA remedial action (USDOE 1994b). As indicated in the diagram, there are various assessments required under the RCRA proposed rule including the RFA, RFI, and CMS. Although many provisions of the Subtitle C proposal have been withdrawn and replaced by a results-based approach (USEPA 2003), the four phases described above still represent the assessments performed for the examples that will be described in this report and are still promulgated by the States programs for corrective actions10.

10 The proposed rule (55 FR 30798) created 40 CFR Part 264 Subpart S, Corrective Action for Solid Waste Management Units at Hazardous Waste Management Facilities.
Facilities may be required to begin corrective action: (1) when applying for a permit to treat, store, or dispose of hazardous waste; (2) upon discovering hazardous waste release from a Solid Waste Management Unit (SWMU) at a permitted or interim status facility; or (3) upon discovering additional SWMUs or hazardous waste releases from SWMUs at a facility already conducting a corrective action (USDOE 1994b). When a hazardous waste release is discovered, a corrective action is required through modification of the facility’s permit or through a RCRA §3008(h) Corrective Action Order (USEPA 2008).

The RFA is the first phase in the RCRA corrective action process. The USEPA will conduct (or require the permittee to conduct under RCRA) the RFA (USDOE 1994b). The RFA consists of a review of existing information about a facility, a visit to the facility, and, if warranted, sampling of environmental media to determine if there is a hazardous waste release from SWMUs at the facility. If the RFA finds that hazardous wastes have been released, the facility permit will require modification or issuance of a RCRA §3008(h) Corrective Action Order to require an RFI for an interim facility11. If RCRA is not the correct legal vehicle for addressing the site, the USDOE will examine the requirements for remediation under other legal authorities (e.g., CERCLA). If no remediation is required, a “Determination of No Further Action” is issued by the USEPA (USDOE 1994b)12.

As indicated in Figure 3, the RFI (40 CFR §264.510-13) is the second phase of the corrective action process. The RFI is a detailed investigation to determine the nature, extent, and migration rate of any releases and to provide the information necessary to develop a strategy for addressing contamination (USDOE 1994b). While similar to the CERCLA RI, the RFI is often more focused than the RI in that it pertains to characterization of releases from SWMUs rather than characterization of the entire facility for the RI (USDOE 1994b).

The third phase of the RCRA corrective action process is a Corrective Measures Study (CMS) (40 CFR §264.520-24). If the RFI finds that a corrective measure is required, the CMS, which corresponds to the CERCLA FS13, is used to examine alternatives for the corrective measure. The stages in the corrective action process that are of interest in terms conceptual and/or mathematical modeling include:

RFA: The RFA is a screening process to determine if there is a hazardous waste release or threat at a Treatment, Storage, and Disposal Facility (TSDF). Information collected during this phase identifies those SWMUs, environmental media, or parts of a facility requiring further investigation; modeling may be used to supplement sampling information during this phase.

RFI: The RFI has three elements: information gathering and sampling activities, sample analysis and data verification, and periodic progress assessments (USEPA 1989c; USEPA 1989d; USEPA 1989e; USEPA 1989f). The first phase in the RFI is to collect and review available information on the release and the facility for information including the characteristics of the release, the environmental setting, evaluations of the threats posed to human health and the environment, and those actions taken to control or minimize threats. Predictive models may be useful for refining conceptualizations of the environmental setting (USEPA 1989c).

11 If hazardous wastes have been released, a Federal Facility Compliance Agreement (FFCA) between DOE and EPA will be developed to require the facility to conduct further studies (USDOE 1994a).

12 Interim measures taken to mitigate actual or potential threats may be conducted during any phase of the corrective action process.

13 One difference between CERCLA and RCRA is that the RFI and CMS phases are not necessarily carried out concurrently; whereas the CERCLA RI and FS are (USDOE 1994a).
Use of predictive models during the RFI may also be appropriate for guiding the general development of monitoring networks. Models may be used in media-specific situations. For example, surface water models may be used to determine the extent of a monitoring system necessary for a stream. In general, model results are not acceptable for estimating release concentrations in an RFI; however, one exception is air. Atmospheric dispersion models are suggested for use with emission-rate monitoring or modeling to predict downwind release concentrations and to define the extent of a release (USEPA 1989c).

CMS: The CMS (USDOE 1993a) involves evaluating the likely effectiveness of proposed alternatives and analyzing and evaluating any testing results. USEPA has the authority to require testing, typically in the form of treatability studies, to occur concurrently with the RFI to prevent a delay in conducting the corrective measure (USDOE 1993a). Predictive models may be particularly useful in designing corrective measures (e.g., pumping and treating contaminated ground water) (USEPA 1989c).

Following the CMS, a permit modification or RCRA §3008(h) Order and an inter-agency agreement are developed to select the technology to be used as the corrective measure at the facility (USDOE 1994b).

2.2.2.2 Requirements Related to Assessment of Cementitious Barriers

Like CERCLA there are no specific requirements or recommendations in RCRA or HSWA regarding the approaches that must be used for the assessment of cementitious barriers. However, the guidance (USEPA 1989a; USEPA 1991a; USEPA 1991b; USEPA 1998; USEPA 2004) developed for human health risk assessment under CERCLA is generally used for RCRA. Thus credit can be taken for waste forms and barriers when predicting exposure media concentrations and corresponding risks although any increases in modeling complexity and uncertainty must be taken into account in the decision-making process (USEPA 1989a). One goal of the Cementitious Barriers Partnership (CBP) is to allow more accurate predictions to be made when cementitious barriers are used in disposal.

One interesting distinction that has arisen involves grouting of RCRA wastes during treatment. RCRA specifically prohibits dilution of hazardous waste (40 CFR § 268.3, "Dilution prohibited as a substitute for treatment"). The standard involves dilution of waste in lieu of treatment, and the USEPA recognizes that such dilution (via grouting) that is a necessary part of the treatment process, which otherwise destroys, removes, or immobilizes the hazardous constituents, is normally permissible.

2.2.3 National Environmental Policy Act (NEPA)

The National Environmental Policy Act (Pub. L. 91-190) was the first of the major environmental laws enacted in the U.S., and its passage stimulated the types of citizen involvement and litigation that have been characteristic of the environmental arena ever since (Bear 1989). Growing concerns about environmental pollution and quality were addressed in NEPA, which was the foundation for inserting environmental considerations into federal decision-making and dramatically increased the amount of information available to the public and boosted the role of the judiciary in federal decisions concerning the environment and its protection (Bear 1989). NEPA established the US National Environmental Policies Council on Environmental Quality (CEQ) (CEQ 2007).

*For example, see EPA’s RCRA Risk Assessment at http://www.epa.gov/oswer/riskassessment/risk_rcra.htm (accessed March 2, 2009).

Overview of the U.S. Department of Energy and Nuclear Regulatory Commission Performance Assessment Approaches

Because various environmental regulations may apply, the USDOE and the various Sites have developed strategies to integrate actions under the various laws including CERCLA, RCRA, and NEPA (Cook 2002; Shedrow et al. 1993). Policy dictates that NEPA reviews are required for siting, construction, and operation of treatment, storage, and disposal facilities that, in addition to supporting CERCLA actions, also serve waste management or other purposes (Cook 2002; USDOE 1994a). For example, a strategy for integrating NEPA requirements and combined RCRA/CERCLA programs for remedial actions at the Savannah River Site (SRS) was developed (Shedrow et al. 1993). The SRS strategy tiers RCRA/CERCLA activities to NEPA reviews and integrates elements of the NEPA and RCRA/CERCLA processes, where applicable.

Under the NEPA/CERCLA policy, USDOE relies on the CERCLA process for review of actions taken under CERCLA—no separate NEPA process is typically required (Cook 2002). In the CERCLA process, USDOE addresses NEPA values (e.g., analysis of cumulative, off-site, ecological, and socioeconomic impacts), includes a discussion of these impacts in CERCLA or other environmental documents, and takes steps to ensure early public involvement in the process.

The USDOE approach to NEPA review for RCRA corrective actions tends to be project-specific. Most USDOE RCRA actions have fallen within the scope of a categorical exclusion (Cook 2002). In the instances where proposed RCRA actions have not qualified for a categorical exclusion, USDOE has often been able to rely on the CERCLA process when the corrective action was taken under a compliance agreement that largely integrates the CERCLA and NEPA requirements.

2.2.3.1 Assessment Related Requirements under NEPA

Every federal agency in the executive branch has a responsibility to implement NEPA. The Congress directed that the U.S. policies, regulations, and laws shall be interpreted and administered in accordance with the policies set forth in NEPA and prescribed a procedure, commonly referred to as “the NEPA process” for its implementation (CEQ 2007). The typical NEPA process is outlined in Figure 4.

The NEPA process begins when a federal agency needs to take an action; the need may be something the agency identifies itself, or it may be identified by someone outside of the agency (CEQ 2007). Based on the need, the agency develops a proposal for the action (Number 1 in Figure 4). The agency will then enter the initial analytical stage (Number 2 in Figure 4) to help determine whether it will pursue one of the following paths (CEQ 2007):

CATegorical EXclusion (CATEX) (Number 3 in Figure 4) is a category of actions that are deemed to not have a significant effect (either individually or cumulatively) on the quality of the human environment (Bear 1989). This category is primarily based on experience with a particular kind of action and its effects. For example, similar actions may have been studied previously and found to have no significant impact after implementation. When there is uncertainty as to the environmental impacts of the proposed action, the agency should prepare an EA. Although actions are often categorized as CATEX based on

16 The basis for this policy is a U.S. Department of Justice determination that there is a statutory conflict between NEPA and CERCLA, and that NEPA, as a matter of law, does not apply to CERCLA cleanups (Cook 2002). Whereas NEPA allows judicial review before an agency takes action, CERCLA generally bars such “pre-enforcement” reviews (Cook 2002).
17 The U.S. Department of Justice has not determined that RCRA corrective actions are not subject to NEPA, so DOE has not been able to establish a broad RCRA/NEPA policy paralleling its CERCLA/NEPA policy (Cook 2002).
18 However, NEPA does not apply to the President, to Congress, or to the Federal courts (CEQ NEPA Regulations 40 CFR §1508.12).
Overview of the U.S. Department of Energy and Nuclear Regulatory Commission Performance Assessment Approaches

Figure 4. The National Environmental Policy Act (NEPA) Process (CEQ 2007)
experience with previous actions, predictive models can be used in the original CATEX designations for actions or needed for actions for which previous actions may not be pertinent19.

Environmental Assessment (EA) (Number 6 in Figure 4) is intended to be a brief public document used to determine the significance of the environmental effects and to examine alternative means to achieve stated objectives. The objectives of the EA are to: provide sufficient evidence, which may be in the form of or supported by modeling results, for determining whether to prepare an EIS, aid compliance with NEPA when no EIS is needed (i.e., resulting in a Finding of No Significant Impact (FONSI) (Number 7 in Figure 4)), and facilitate preparation of the EIS (Bear 1989).

Environmental Impact Statement (EIS) (Number 8 in Figure 4) must be prepared if a major federal action is proposed that may significantly affect the quality of the human environment and acts as an action-forcing vehicle to ensure that NEPA policies are integrated into ongoing Federal programs and actions (Bear 1989). Once the decision is made to prepare an EIS (and the Notice of Intent is published), the agency then engages in a "scoping process" (Number 10 in Figure 4) to determine the scope of the EIS and the problems to be addressed. A draft EIS is prepared (Number 11 in Figure 4) for comment with contents set out under the CEQ regulations (40 CFR §1502.10) (Bear 1989). The focal point of the EIS is the alternatives analysis, which includes the determination of which alternatives are analyzed, with the judicial standard being that of “reasonableness”. The analysis of alternatives frequently requires the use of computer models, some even quite complex, to predict the impact of the actions being studied. Substantive comments are addressed in the final EIS (Number 13 in Figure 4), which is made available to the public.

The Record of Decision (Number 15 in Figure 4) is the final step in the EIS process. The ROD states the decision, identifies the alternatives that were considered, and discusses mitigation plans (CEQ 2007). Through the NEPA process, Federal agencies are required to determine if their actions may have significant environmental effects and to consider the environmental and related social and economic effects of their actions (CEQ 2007).

2.2.3.2 Requirements Related to Assessment of Cementitious Barriers under NEPA

Like CERCLA and RCRA, there are no specific requirements or recommendations in NEPA regarding the approaches that must be used for the assessment of cementitious barriers. However, NEPA requires that all “reasonable” alternatives be considered during the EIS process; this process is when alternatives including barriers or grouting may be considered for action and evaluation20. Credit can be taken for waste forms and barriers when predicting exposure media concentrations and corresponding risks although any increases in modeling complexity and uncertainty must be taken into account in the decision-making process. One goal of the CBP is to allow more accurate predictions to be made when cementitious barriers are used in disposal actions.

In the NEPA assessment process, the EIS is the most likely stage where cementitious barriers and the uncertainties from their use may be considered. Available EAs for SRS, Hanford, and the Idaho Site were reviewed and none contained reference to either cementitious barriers or uncertainty analysis. On the

19As an example of the use of models in designating an action as an CATEX, see Town of Marshfield v. Federal Aviation Administration, 2008 U.S. App. LEXIS 25410, 2008 WL 5251104, No. 07-2820 (1st Cir. 12/18/08).

20 For example, SRS is considering grouting as one alternative (and the preferred alternative at that) for closure of the 49 remaining high-level waste (HLW) tanks on site (USDOE 2002). Two SRS tanks (i.e., 17F and 20F) were operationally closed by filling them with grout under South Carolina Department of Health and Environmental Control (SCDHEC) industrial wastewater permits. These operational tank closures are described in the examples.
other hand, Final EISs, the focal point of which is a detailed analysis of the potential impacts of proposed actions, were examined for the SR, Hanford, and Idaho Sites. Of the Final EISs identified in Table 1, cementitious barriers are considered as alternatives (or incorporated into the alternatives considered) in all but one of the Final EISs for the three sites (i.e., DOE/EIS-0222 for Hanford).

2.2.4 USNRC License Termination Rule, 10 CFR Part 20 Subpart E

The U.S. Nuclear Regulatory Commission (USNRC), which was established by the Energy Reorganization Act of 1974, grants licenses to companies for the commercial operation of nuclear reactors and radiological facilities. Any company holding such a license must seek USNRC permission to decommission a commercial facility. The general decommissioning process is illustrated in Figure 5. The USNRC does not have regulatory authority over defense nuclear facilities.

For a power reactor, a Post-Shutdown Decommissioning Activities Report (PSDAR) must be submitted either before or within two years following cessation of operations. Among other requirements, the PSDAR must include a discussion describing how environmental impacts from decommissioning activities will be bounded by pertinent environmental impact statements. For a power reactor, the licensee must submit an application for termination of its license for USNRC approval and be accompanied or preceded by a license termination plan (LTP), which must include:

- A site characterization,
- Identification of remaining dismantlement activities and estimate of remaining decommissioning costs,
- Plans for site remediation and for the final radiation survey,
- A description of the end use of the site, if restricted, and
- A supplement to the environmental report describing any new information or significant environmental changes from the proposed termination activities.

The licensee must also demonstrate that the requirements of the License Termination Rule (LTR) (10 CFR §20.1401 et seq.) will be met. For a reactor, decommissioning must be completed within 60 years of the cessation of operations unless otherwise approved.

For a radiological material site licensed by the USNRC, a decommissioning plan (DP) is submitted to the USNRC if required or if the activities have not been previously approved and could increase health and safety impacts. Once the licensee demonstrates compliance with its decommissioning plan, it must then request license termination from the USNRC either for unrestricted or restricted release (where controls remain in place). For unrestricted release, a full technical review guided by NUREG-1757 is undertaken with results documented in an Environmental Assessment (EA) and a Safety Evaluation Report (SER). The EA process is carried out as described in the previous section on NEPA.

23. The NRC consolidated numerous guidance documents into a single, three-volume document (NUREG-1757) describing how to satisfy the license termination requirements by means acceptable to the NRC (USNRC 2003a; USNRC 2003b; USNRC 2003c).
Overview of the U.S. Department of Energy and Nuclear Regulatory Commission Performance Assessment Approaches

Table 1. Final Environmental Impact Statements Related to the Savannah River, Hanford, and Idaho Sites

(http://www.gc.doe.gov/NEPA/final_environmental_impact_statements.htm)

<table>
<thead>
<tr>
<th>EIS Number</th>
<th>Site</th>
<th>Title</th>
<th>Cementitious Barriers Considered</th>
<th>Uncertainty Approach for Barriers</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE/EIS-0189</td>
<td>Hanford</td>
<td>Final Environmental Impact Statement for the Tank Waste Remediation System (08/1996)</td>
<td>Grouting tank wastes and tank farms</td>
<td>Bounding approach for accidents and sensitivity analyses for risks including Monte Carlo</td>
</tr>
<tr>
<td>DOE/EIS-0212</td>
<td>Hanford</td>
<td>Final Environmental Impact Statement Safe Interim Storage of Hanford Tank Wastes (10/1995)</td>
<td>Grouting option dismissed due to potential impact on future decisions</td>
<td>Not applicable</td>
</tr>
<tr>
<td>DOE/EIS-0222</td>
<td>Hanford</td>
<td>Final Hanford Comprehensive Land-Use Plan Environmental Impact Statement</td>
<td>No discussion of cementitious barriers</td>
<td>Not applicable</td>
</tr>
<tr>
<td>DOE/EIS-0244</td>
<td>Hanford</td>
<td>Final Environmental Impact Statement - Plutonium Finishing Plant Stabilization (05/1996)</td>
<td>Cementing plutonium-containing liquid effluents</td>
<td>Only maximally exposed individual doses and health effects</td>
</tr>
<tr>
<td>DOE/EIS-0287</td>
<td>Idaho</td>
<td>Idaho High-Level Waste & Facilities Disposition, Final Environmental Impact Statement (09/2002)</td>
<td>Grouting of low-level wastes, tank heels, and newly-generated liquid wastes</td>
<td>Accidents at least as severe as “reasonably foreseeable” and includes both sensitivity and uncertainty analyses</td>
</tr>
<tr>
<td>DOE/EIS-0290</td>
<td>Idaho</td>
<td>Idaho National Engineering and Environmental Laboratory Advanced Mixed Waste Treatment Project Environmental Impact Statement (01/1999)</td>
<td>Macrocapsulation into a grout waste form (which would then be drummed for disposal)</td>
<td>Conservative assumptions and analytical approaches used to produce a credible projection of the bounding potential environmental impacts</td>
</tr>
<tr>
<td>DOE/EIS-0303</td>
<td>SRS</td>
<td>The Savannah River Site High-Level Waste Tank Closure Final Environmental Impact Statement (05/2002)</td>
<td>Grouting tank farms</td>
<td>Accidents at least as severe as “reasonably foreseeable” and scenario-based analysis</td>
</tr>
</tbody>
</table>
Overview of the U.S. Department of Energy and Nuclear Regulatory Commission Performance Assessment Approaches

Figure 5. The USNRC Decommissioning Process (after USNRC 2003a)
Overview of the U.S. Department of Energy and Nuclear Regulatory Commission Performance Assessment Approaches

For plans proposing restricted release for material sites, the review is conducted in two phases. The first phase focuses on the financial assurance and institutional control provisions of the plan. After these provisions are found to comply with the LTR, the remainder of the review is completed. The second phase of the review addresses the rest of the technical review as guided by NUREG-1757 and includes developing an EIS. The EIS process is also carried out as described in the previous section on NEPA. Following approval of the DP by the USNRC, the licensee must complete decommissioning activities within 24 months or apply for an alternate schedule. In general, the decommissioning process illustrated in Figure 5 for fuel cycle facilities is the same as for material sites.

2.2.4.1 Assessment Related Requirements

The primary type of evaluation required under the License Termination Rule (LTR) (10 CFR §20.1401 et seq.) is the assessment of dose for restricted release (10 CFR §20.1403) or unrestricted release (10 CFR §20.1402) of facilities licensed by the NRC (10 CFR §20.1401). A site is acceptable for unrestricted release if the residual radioactivity, upon reduction to levels that are as low as reasonably achievable (ALARA), translates to a total expected dose equivalent (TEDE) to an average member of the critical group that does not exceed 0.25 mSv (25 mrem) per year including that from groundwater sources of drinking water (10 CFR §20.1402).

A site will be considered acceptable for restricted release if the licensee meets certain conditions (10 CFR §20.1403(a)-(e)) including provisions of not increasing net public or environmental harm from the proposed actions or “legally enforceable institutional controls” to protect the public by restricting future land use. The licensee can use either conservative default scenarios for on-site use or site-specific models for more realistic scenarios for the dose assessments (USNRC 2004). Typically predictive models are important if not critical to supporting the license termination process in terms of dose assessment calculations.

2.2.4.2 Guidance for Cementitious Barriers

Like CERCLA, RCRA, and NEPA, there are no specific requirements in the LTR regarding the approaches that must be used for the assessment of cementitious barriers. However, unlike these laws administered by the USEPA, the LTR provides specific guidance for the assessment of the performance of engineered barriers including: (a) design and functionality, (b) technical basis for design and functionality, (c) degradation mechanisms and sensitivity analysis, (d) uncertainty in design and functionality, and (e) suitability of numerical models (USNRC 2003b). The assessment of the barrier performance for unrestricted release should evaluate potential breach and degradation processes over time (including uncertainties) because monitoring and maintenance are assumed to be inactive.

When considering complex and high-risk decommissioning sites and those sites with long-lived radionuclides, the USNRC suggests employing probabilistic analyses (USNRC 2003a). Point-value analyses may be inadequate in these cases. For simpler, low-risk sites and those with short-lived radionuclides,

24 A license can be terminated for restricted release only after the licensee has met certain conditions including “legally enforceable institutional controls” to protect the public (10 CFR §20.1403(a)-(e)). The USNRC License Termination Rule (10 CFR §20.1401 et seq.) sets forth decommissioning requirements. See New Jersey v. NRC, Nos. 06-5140, 07-1559, 07-1756 described in footnote 22.

25 As illustrated above, the decommissioning process may involve development of either environmental assessments or environmental impact statements or both.

36 ALARA determinations must take into account consideration of detriments expected to potentially result from decontamination and waste disposal.
point-value analysis with sensitivity analysis may be sufficient (USNRC 2003a).

For engineered barriers that must have very long-term performance, natural analogs should be considered because the greatest uncertainties result from extrapolating short-term information to long-term performance (USNRC 2003a). The behavior of the barrier should be considered an evolving component of a larger, dynamic ecosystem (Waugh et al. 1997). Table 2 summarizes selected guidance and reference reports that may have relevance to the application of engineered barriers at decommissioning sites (USNRC 2003a).

The USNRC provides specific guidance for cement-based engineered barriers. The performance of these barriers can be divided into those based on either 1) hydrologic effectiveness or physical containment to reduce water contact or 2) chemical effectiveness to limit radionuclide transport (Waugh et al. 1997). Concrete degradation mechanisms (e.g. sulfate attack, chloride corrosion, cracking) can cause contact of water with the waste and corresponding contaminant release (USNRC 2003a). For chemical containment, the effectiveness of cement-based materials strongly depends on the source release characteristics; performance is very difficult to predict and is strongly related to bulk hydraulic properties and quantity of cement-based materials present (USNRC 2003a). A cement-based barrier may also limit intruder contact with waste for up to hundreds of years if it remains unexposed to aggressive environmental conditions (USNRC 2003a). Because the performance of cement-based engineered barriers may have to be assessed over hundreds if not thousands of years, the aforementioned uncertainty issues for cement-based barriers are likely critical to the assessment.

2.3 Spent Fuel Pools

When removed from a reactor, spent fuel is placed in a spent fuel pool to allow the fuel to cool and decay. Spent fuel pools are typically 40-foot deep, steel-lined, concrete vaults filled with water, which is a natural barrier to radiation (USGAO 2005). Over time, spent fuel in the pools is typically rearranged to accommodate additional fuel while maintaining safety. Some spent fuel has been transferred to dry storage casks to await permanent disposition at a national repository. Spent fuel is cooled for at least five years before it can be moved to dry storage casks (USGAO 2005).

Spent nuclear fuel can be stored in a water filled spent fuel pool as regulated under 10 CFR Part 50 (Domestic Licensing of Production and Utilization Facilities)28. Technical challenges include removing the spent fuel decay heat, storing the fuel in an arrangement to avoid criticality, and providing shielding (USNRC 2006a). The USNRC requires in 10 CFR §50.68 that spent fuel pools remain subcritical in an unborated, most adverse moderation condition, but allows credit for fuel burnup when analyzing the storage configuration of the spent fuel (USNRC 2006a). Because burnup can be accounted for in these evaluations, predictive modeling is important to the regulation of spent fuel pools.

SFP structures, systems and components (SSC) are designed to accomplish the following tasks:

- Prevent loss of water from the fuel pool that would lead to water levels that are inadequate for cooling and shielding.
- Protect the fuel from mechanical damage.

27 Point value methods are suggested for selecting the design basis flood for the development of long-term erosion controls (USNRC 2003a).

Table 2. Summary of Selected Reports Related to Engineered Barriers (reproduced from USNRC 2003a)

<table>
<thead>
<tr>
<th>Report</th>
<th>Brief Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>NISTIR 6519, “Effect of Drying Shrinkage Cracks and Flexural Cracks on Concrete Bulk Permeability,” National Institute of Standards and Technology (NIST) Gaithersburg, MD, 2000.</td>
<td>Discusses a model for predicting both the width and spacing of flexural and drying-shrinkage cracks to estimate composite (intact and cracked) concrete structure permeability.</td>
</tr>
</tbody>
</table>
Table 2. Summary of Selected Reports Related to Engineered Barriers (reproduced from USNRC 2003a) (contd)

<table>
<thead>
<tr>
<th>Report</th>
<th>Brief Summary</th>
</tr>
</thead>
</table>
• Provide the capability to limit potential offsite exposures from a significant release of radioactivity from the fuel or significant leakage of pool coolant.
• Provide adequate cooling to the spent fuel to remove residual heat.

General Design Criterion (GDC) 61, “Fuel Storage Handling and Radioactive Controls”, Appendix A to 10 CFR Part 50, requires that fuel storage and handling systems be designed to ensure adequate safety under anticipated operating and accident conditions. These include (i) periodic inspections, (ii) suitable radiation shielding, (iii) appropriate containment, confinement, and filtering systems, (iv) residual heat removal capability consistent with its importance to safety, and (v) prevention of significant reduction in fuel storage inventory under accident conditions.

The SFP design basis is also covered by GDC 2, “Design Basis for Protection against Natural Phenomena”, GDC 4, “Environmental and Dynamic Effects Design Basis”, and GDC 63, “Prevention of Criticality on Fuel Storage and Handling”, as described in Appendix A to 10 CFR Part 50. Regulatory guide 1.26, “Quality Group Classification and Standards for Water, Steam and Radioactive Waste Containing Components of NPP”, and regulatory guide 1.29, “Seismic Design classification”, detail the quality groups and seismic categories applicable to the design of SFPs.

Other design feature requirements include requirements for the control of crane loads acting above the SFP, drainage prevention provisions, instrumentation, additional water to add coolant to the SFP, pool cooling to maintain a temperature below 60 degrees centigrade, the design of gates and weirs to isolate the SFP from adjacent fuel handling areas, enabling fuel cooling for all stored fuel assemblies, providing leakage containment, ensuring pool cleanup to maintain low radiation levels, and provisions to protect high burn-up fuel from mechanical damage.

As suggested above, one analysis required specifically for spent fuel pools is to evaluate the storage configuration to assure that criticality is not a concern (10 CFR §50.68). Assessments for spent fuel pools, especially those for decommissioning, are similar to if not part of those for commercial reactors licensed by the USNRC.

3.0 CEMENTITIOUS BARRIER PA MODELING APPROACHES

A variety of different modeling approaches have been used to address cementitious barriers. Approaches range from taking no credit for the cementitious materials to detailed modeling to support assumptions about the evolution of chemical and physical properties. The USDOE has a need for a better understanding of cementitious barrier performance and better approaches for long term modeling to support decisions in the different regulatory environments described in the previous section. One goal of the examples in this section is to illustrate how modeling has been implemented in the different environments to encourage improved sharing of information.
The emphasis of this section is on examples of PAs from USDOE disposal facilities. The examples in this section are organized by general climate at the DOE Sites of interest (i.e., arid, semi-arid, and temperate). This arrangement reflects the emphasis placed on the groundwater pathway. Thus, the importance of cementitious barriers is related to climate and amount of infiltration at a given site.

Because of arid climates, water infiltration into waste forms is not a concern in some DOE facilities. For example, at the Nevada Test Site (USNTS) the mean annual precipitation of 12 cm is greatly exceeded by the annual potential evapotranspiration, typically about 150 cm/yr (See Figure 6). The migration of groundwater, when there is any because of rain, is down for a small distance and then upward. The depth of the saturated zone is about 240 m. Samples of corings, by way of chloride content, show that no surface water has reached the deep saturated zone in many thousands of years. Because there is no mechanism to transport the contaminants to the groundwater, cementitious barriers are not used at the NTS.

The Los Alamos National Laboratory (LANL) is nearly as dry as the NTS. For many of the same reasons as listed above, LANL has not credited cementitious materials for engineered barriers in its PAs.

Two DOE facilities, the Hanford Site and the Idaho National Laboratory, are as dry as the Nevada and Los Alamos sites, but have water tables somewhat closer to the surface and have some significant waste streams that pose potential risks without consideration of cementitious barriers. Therefore, cementitious barriers are considered in the PAs for these sites.

Figure 7 illustrates a conceptual model used to evaluate degradation of cementitious grout used to physically stabilize and isolate residual waste tanks at the Idaho site and could generally applied to any of the disposal facilities mentioned in this section.

The Oak Ridge and Savannah River Sites are located in more temperate climates with greater infiltration and water tables located much closer to the ground surface. In these environments, the groundwater pathway tends to be a more significant contributor to the PA.

Examples from these DOE sites are provided in the following sections.

3.1 Idaho Site

3.1.1 Tank Farm Facility Performance Assessment (INL)

A Performance Assessment (USDOE-ID 2003) was performed to assess the projected radiological dose impacts associated with the closure of the Tank Farm Facility (TFF) at the Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Laboratory (INL) Site in the southeastern part of the State of Idaho. Section 3116 was the regulatory framework for the assessment. The INL Site is a semi-arid site with roughly 22 cm/yr of precipitation. The water table at INTEC is roughly 450 ft below the ground surface. The TFF is a collection of 15 belowground stainless-steel tanks. The eleven 300,000-gal tanks are enclosed in belowground concrete vaults (see Fig. 8), while the four 30,000-gal tanks are directly buried in the soil. The tanks were used for storage of HLW from operations at INTEC.

3.1.1.1 Role of Cementitious Barriers and Processes Considered

The concrete and grout are assumed to function as physical and chemical barriers controlled by the assumed hydraulic conductivity and distribution coefficients. These properties are assumed to change with time, in general degrading the performance of the materials as barriers over time. Figure 7 is an illustration of the physical degradation assumptions. Cracks
are not specifically modeled but are represented as a step change in the bulk hydraulic conductivity of the porous media.

3.1.1.2 Parameter Assumptions and Conceptual Models

A detailed analysis of cementitious materials degradation was performed for the INTEC Tank Farm. The detailed analysis included consideration of sulfate and magnesium attack, carbonation, and calcium hydroxide leaching. Reinforcement corrosion in the outer vault concrete and general corrosion of the steel tank were also modeled. The effects of acid attack, alkali-aggregate reaction, and corrosion of the pipes on the concrete and grout degradation were assumed to be insignificant compared to the three modeled chemical attacks. The DUST-MS computer code was used to model releases from the engineered features. The degradation mechanisms were modeled using a number of different algorithms, which are documented in detail in Appendix E of the PA.

The base case degradation model results indicated that maximum degradation, which is from reinforcement corrosion caused cracks in the concrete. The assumption was that the outer vault to turn to rubble after about 500 years. Once the outer vault completely degrades, the grout between the vault and the tank was also assume to be rubble at approximately 5,000 years. The concrete tank and grout fill in the tank was assume to completely degrade and turn to rubble after about 40,000 years. The grout associated with the piping turned to rubble after about 500 years. The predominant chemical attack on the grout was caused by reactions with sulfate and magnesium ions. Sensitivity analyses indicated the times for the four zones to turn to rubble can vary greatly, i.e., from tens of years to tens of thousands of years or beyond.

The result of the detailed analysis was used to provide a basis for a set of conservative assumptions regarding degradation of the material properties. The material initially had properties suitable for intact conditions but was assumed to have properties of the native

29 From “Special Analysis of Transuranic Waste In Trench T04C at the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada Revision 1.0, DOE/NV/25946-283, March 2008.
Figure 7. Conceptualization of the Degradation Sequence (a) to (e) for a Closed Tank Farm Facility (USDOE-ID 2003)

Figure 8. INL Tank WM-185 Vault Dome, Support Beams, and Risers (USDOE-ID 2003)
Overview of the U.S. Department of Energy and Nuclear Regulatory Commission Performance Assessment Approaches

soil when degraded. For instance, the time of the step change in the parameters for the vault, grout between the vault and tank, piping, and the steel tank filled with grout were assumed to be 100, 100, 500, and 500 years, respectively. These degradation step changes were within the ranges predicted by the degradation analysis, even for the minimum degradation case, which indicated 100, 500, 1,750, and 1,750 years, respectively.

Conservative assumptions used in the degradation analyses included: (1) determining the rates of modeled chemical attacks from experiments involving degraded instead of intact concrete and (2) not taking credit for the chemical barrier provided by the chemically-reducing grout, vault, and tank. Only the physical barrier to flow and transport was modeled, while the chemical barrier was represented with a distribution coefficient, which was more significant in affecting radionuclide release rates.

In addition, the vault failure, modeled as occurring from the expansion reaction caused by reinforcement corrosion, was assumed to occur at 100 years after closure, but no credit was taken for the non-aggressive corrosion environment surrounding the vault. Finally, the corrosion rates that were determined for coupons placed in the tank liquid and used in corrosion rate calculations were expected to be greater than corrosion rates in the grouted tank and piping and in the water contacting the vault wall.

From a chemical perspective, reducing conditions were assumed to be maintained for both the grout and the concrete. The K_ds assumed for cementitious materials were:

- Sr: $K_d = 0.006 \text{ m}^3/\text{kg}$, range from 0.001 to 0.006
- Tc: $K_d = 5 \text{ m}^3/\text{kg}$, range from 1 to 5
- I: $K_d = 0.03 \text{ m}^3/\text{kg}$, range from 0.002 to 0.03
- C: $K_d = 10 \text{ m}^3/\text{kg}$, range from 1 to 10

The detailed analysis showed that no change in chemical properties was expected until long past the 1,000 years of the compliance period.

3.1.1.3 Relative Importance in Context of Assessment

In context of the assessment, the most important factor was the reducing environment steel tank of the cementitious material, which was used as the basis for assumed K_d values. The assumed failure times were demonstrated to be conservative based on a number of sensitivity cases. Thus, although it was concluded that additional credit could be taken for longer performance of the physical barriers, the conclusions regarding compliance were not sensitive to changes in the timing of the physical degradation.

3.1.2 Radioactive Waste Management Complex (INL)

The active disposal facility at the Radioactive Waste Management Complex (RWMC) at the Idaho National Laboratory is operated in accordance with DOE Order 435.1 (USDOE/NE-ID 2007). The facility is located within the historic radioactive waste "burial grounds" and thus the inventories are also included in the CERCLA assessment for the RWMC.

The PA for the active disposal facility in the RWMC was conducted using a hybrid approach with the compliance case and several sensitivity cases being run in a deterministic manner and a probabilistic approach being used for the detailed sensitivity and uncertainty analysis.

3.1.2.1 Role of Cementitious Barriers and Processes Considered

The active disposal facility at the Radioactive Waste Management Complex, but the PA for this site (USDOE/NE-ID 2007) includes the assumption that a
representative elementary volume can be defined that allows the waste to be described as a porous medium. The buried waste forms, such as metal drums, metal, concrete, and wooden boxes, soft-sided containers, and a variety of specialized containers, challenge this assumption. Given the scale of the area being represented in the numerical model (i.e., the entire Active LLW Disposal Facility), it is not practical to consider the waste as having hydrological properties different from the surface sediments.

In general, cementitious barriers are not credited hydraulically in the RWMC performance assessment. However, some credit was taken for diffusion-controlled migration of radionuclides through selected concrete containers. This approach is discussed in the following section.

3.1.2.2 Parameter Assumptions and Conceptual Models

As stated above, at the RWMC cementitious barriers are generally treated hydraulically as being the same as the surrounding porous media. The performance of the concrete as a barrier was treated as a diffusion problem only for cask containers. The chemistry of the cementitious barriers was not considered to change during the course of the simulation. The distribution coefficients were, therefore, considered not to change.

Concrete casks were not modeled with an assumed failure time. Instead, release of contaminant mass from within the casks was modeled as diffusion out of the cask. Casks were modeled as cylinders with a 15-cm (6-in.) wall thickness. Using this thickness assumption allowed the ready release of contamination at the surface of the cask. In addition, a diffusion coefficient of 10^{-6} cm2/s was used. A diffusion coefficient of 10^{-6} cm2/s is typical for a metal ion in water and does not account for the possible partitioning of the contaminant within the waste form or the tortuosity of the porous media. Partitioning and travel through a tortuous path would slow the contaminant release.

3.1.2.3 Relative Importance in Context of Assessment

Although, some credit was taken for diffusion through the concrete container, the analysis illustrated that even with conservative diffusion assumptions acceptable performance was obtained. Thus, consideration of the performance of cementitious materials
was not an important factor in the RWMC PA. This is largely related to the semi-arid conditions and the depth of the water table at the INL Site.

3.2 Hanford Site

3.2.1 Integrated Disposal Facility

The Hanford Site is located in southeastern Washington State in a semi-arid climate. The Integrated Disposal Facility (IDF) at the Hanford Site consists of a single landfill with two adjacent, expandable cells. One cell is permitted as a RCRA Subtitle C compliant landfill system. The other cell contains waste not governed by RCRA. A performance assessment has been conducted for both cells of the IDF (Mann et al. 2005). The performance assessment addressed a number of different waste forms including glass and grouted wastes. This example focused on the assessment of the grouted waste form.

3.2.2.1 Role of Cementitious Barriers and Processes Considered

The IDF PA assumed that all “treated” waste has been grouted prior to disposal. The grout is assumed to form an effective barrier to infiltrating moisture. Therefore, the dominant release mechanism from a grouted waste form is the diffusion of the contaminant through the grout to the waste package surface. Once the contaminant is available on the package surface, it becomes available for transport in/with the infiltrating water.

3.2.2.2 Parameter Assumptions and Conceptual Models

The near-field numerical model calculations for the grouted waste form assume the contaminant flux into the far-field numerical model can be approximated by an analytical solution for the contaminant release at the bottom of the IDF trench. The waste form release rate for treated solid waste assumed all treated waste is encapsulated in a grouted waste form where the contaminant release mechanism is dominated by diffusion from the waste package. Assumed most probable and conservative diffusion coefficients for key contaminants are summarized in Table 3.

This calculation approach neglects any chemical interactions with the surrounding backfill materials and other waste packages in the trench. The calculation approach also neglects the transport time associated with the recharge through the trench.

3.2.2.3 Relative Importance in Context of Assessment

Similar to the case for the RWMC PA, little credit was taken for the performance of cementitious materials. The cementitious waste forms in the Hanford IDF PA are relatively unimportant when compared to the vitriied waste included in this analysis. It appears that much work had been done on the vitriied waste to define its release mechanisms with some degree of accuracy. The conclusion was made that it was anticipated that improved grout waste forms would be developed and used for the actual disposal, thus the conclusions of the PA should be bounding for the cementitious waste forms.

3.3 Oak Ridge National Laboratory

3.3.1 Solid Waste Storage Area 6

The Solid Waste Storage Area (SWSA) 6 has accepted waste since 1969 (ORNL 1997). It has been the only active waste disposal facility for ORNL-generated wastes since 1973. Approximately 12 hectares (30 acres) of the site is still useable for waste disposal operations, with most of the total site capacity having been used prior to September 26, 1988. Prior to September 1988 a variety of disposal methods were used at SWSA 6, with the bulk of waste materials buried in shallow, unlined trenches. Wastes disposed of since that time have been placed in excavated trenches for biological materials; below-grade, concrete-lined, silos for bulk waste materials;
engineered wells for fissile and high "range" (>200 mrem/hr) materials; and tumulus disposal units for containerized wastes. ORNL is located in a temperate environment with the water table relatively close to the base of the disposal facility.

3.3.1.1 Role of Cementitious Barriers and Processes Considered

The cementitious barriers are considered as both barriers to infiltration and release and as adsorbing media. Although a relatively detailed approach was adopted for the degradation calculations, a conservative assumption was made, i.e., the cementitious barrier was assumed to lose all capability as a physical barrier at the time through cracks form. Sensitivity analysis results indicated that sulfate attack was the primary degradation mechanism for the cementitious barriers.

3.3.1.2 Parameter Assumptions and Conceptual Models

A rather involved analysis of the cementitious barriers was used in the SWSA PA (ORNL 1997). Figures 10 and 11 illustrate the conceptual approach used for the SOURCE computer programs. The SOURCE programs are used to conduct structural and degradation calculations in a relatively detailed manner. As illustrated in the figures, hydroxide leaching, sulfate attack, reinforcement corrosion, and the associated cracking of the cementitious materials are calculated to determine the onset of cracking.

The chemical aspect of the cementitious barriers performance is based on a linear isotherm K_d model and diffusion coefficients, which are invariant with time but change when the overall barrier is assumed to change conditions. Solubility controls are also applied.
Figure 10. Overall Logic Flow in the Oak Ridge PA SOURCE Computer Codes (ORNL 1997)
Overview of the U.S. Department of Energy and Nuclear Regulatory Commission Performance Assessment Approaches

Figure 11. Detailed Logic Flow for the SOURCE1 and SOURCE2 Computer Programs (ORNL 1997)
as appropriate. No credit is taken for additives that could improve the chemical performance of cementitious barriers (e.g., slag or similar additives to create a reducing environment).

3.3.1.3 Relative Importance in Context of Assessment

Cementitious materials were an important feature for the overall performance of the disposal facility. The grout inside of vaults, the thickness of vault walls, and the timing of failure of the concrete pad and collection system all were shown to influence the results of the assessment. This is reflected by the relatively high level of rigor applied to the calculations related to degradation of cementitious materials. Although double thickness walls were considered, only single thickness walls were used as a basis for the final results, which illustrates that even for a site that depends on cementitious barriers, some room for conservatism remains. The authors concluded that further efforts to refine the design and analysis of cementitious barriers could potentially result in improved estimates regarding disposal capacity.

3.4 Savannah River Site

3.4.1 F-Tank Farm

The F-Tank Farm (FTF) is in the north-central portion of the Savannah River Site (SRS) and occupies approximately 22 acres within F-Area. The FTF is an active radioactive waste storage facility consisting of 22 carbon steel waste tanks and ancillary equipment such as transfer lines, evaporators and pump tanks. The FTF stores and processes liquid radioactive waste generated primarily from the Plutonium Recovery and Extraction (PUREX) process. FTF began radioactive operations in 1954. Two of the 22 tanks (Tanks 17 and 20) were operationally closed in 1997 by filling with grout. In accordance with the FFA, industrial wastewater construction and operating permits were obtained from South Carolina Department of Health and Environmental Control (SCDHEC) for the underground waste tanks. The remaining FTF waste tanks will be filled with grout as part of the tank farm closure plan. A performance assessment is being conducted to support closure decisions (SRS 2008).

3.4.1.1 Role of Cementitious Barriers and Processes Considered

In the SRS PAs cementitious materials are assumed to serve roles as physical and chemical barriers. The materials are used in waste forms, infiltration barrier, barriers to releases and as a barrier to steel corrosion. Rather than being a well mixed waste form, the cementitious material, used in the tank closures was poured on top of the thin, residual waste layer. It provides a barrier to infiltration and provides a reducing environment which limits transport. In addition, a layer of “strong” grout was poured on top of the reducing grout and serves as protection against human intrusion by way of drilling. The concrete surrounding the steel tank is the barrier delaying de-passivation of the steel tank. Figure 12 shows the steel tank and Figure 13 shows the completed tank with surrounding concrete before burial. The cementitious materials are an important feature in the PA for the F-Tank Farm.

![Figure 12. Type IIIA Primary and Secondary Carbon Steel Liners - Late Tank Construction](image)
3.4.1.2 Parameter Assumptions and Conceptual Models

A relatively detailed modeling approach was applied for the cementitious materials considered in the SRS F-Tank Farm models. Figure 14 is a list of the phenomena considered in the PA which affect the durability of the cementitious barriers. As noted above, changes in the cementitious materials were not only assumed to impact migration of water and radionuclides, they also delayed the onset of corrosion of the steel tank. Figure 15 is an illustration of the different features considered in the models for one type of tank.

The results from the SRS F-Tank Farm PA indicate that the tank fill grout can begin degrading hydraulically as early as year 800 (Type IV tanks) with full degradation being reached as early as year 13,000 (Type I tanks). The waste tank concrete can begin degrading as early as year 400 after closure (Type IV tank) with full degradation occurring at year 800 (Type IV tank). The grout was assumed to chemically degrade based on the number of pore water flushes, going from reducing to oxidizing. Figure 16 shows the “history” of the degradation model for the various cementitious materials evaluated in the FTF PA.

The concrete, which contains the steel tank, is considered only for its ability to prevent the steel tank from oxidizing. No hydraulic credit is taken, but credit is taken for sorption in this material. A model (Subramanian 2007) was run to determine the penetration rate from the environment to the steel tank for those chemicals which affect the steel passivation.

3.4.1.3 Relative Importance in Context of Assessment

Two assumptions about the behavior of the cementitious barriers were important to this PA. The more important related to the penetration of the environmental chemicals through the concrete and their affect on the steel tank. No waste was released as long as the steel tank was considered intact. The chemical behavior of the grout in limiting radionuclide migration became more important once the steel tank failed since the reducing properties of the grout helped hold the radionuclides in place.

3.4.2 E-Area Low-level Waste Facility

The SRS is located in a temperate climate with the water table relatively close to the ground surface, such that the groundwater pathway is a significant contributor to potential doses. A revised performance assessment was recently completed for the E-Area (SRS 2007).

The E-area Low-level Waste Facility (ELLWF) is located in the central region of the SRS known as the General Separations Area (GSA). It is an elbow-shaped, cleared area, which curves to the northwest, situated immediately north of the Mixed Waste Management Facility (MWMF), a former radioactive waste “burial ground” that received mixed waste and was closed under RCRA.

The ELLWF is composed of 200 acres for waste disposal and a surrounding buffer zone that extends out to the 100-m point of compliance. Radiological waste disposal operation at the ELLWF began in 1994. Disposal units within the footprint of the ELLWF include: Slit Trenches, Engineered Trenches, Components in Grout (CIG) Trenches, the Low-
<table>
<thead>
<tr>
<th>PHYSICAL FACTORS</th>
<th>CHEMICAL FACTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss of Mass</td>
<td>Loss of Mass</td>
</tr>
<tr>
<td>• Erosion</td>
<td>• Desiccation (Early water loss) – Cracking</td>
</tr>
<tr>
<td>- Water</td>
<td>• Dissolution/Leaching – Increased Porosity</td>
</tr>
<tr>
<td>- Wind</td>
<td>- Water</td>
</tr>
<tr>
<td></td>
<td>- Acids</td>
</tr>
<tr>
<td></td>
<td>- Microbial degradation</td>
</tr>
<tr>
<td>Mechanical Cracking</td>
<td>Addition of Mass (Expansion) – Cracking</td>
</tr>
<tr>
<td>• Overload</td>
<td>• Sulfate (Ettringite)</td>
</tr>
<tr>
<td>• Bio-intrusion</td>
<td>• Alkali (ASR hygroscopic gel)</td>
</tr>
<tr>
<td>• Freeze Thaw</td>
<td>• Fe (rebar) + Oxygen, Carbonate, Chloride</td>
</tr>
<tr>
<td>• Thermal Stress</td>
<td></td>
</tr>
<tr>
<td>• Geological Stress</td>
<td></td>
</tr>
<tr>
<td>- Earthquakes</td>
<td></td>
</tr>
<tr>
<td>- Subsidence</td>
<td></td>
</tr>
<tr>
<td>Addition of Mass</td>
<td>Addition of Mass – Fill/Seal Cracks and Pores</td>
</tr>
<tr>
<td>– Fill/Seal Cracks</td>
<td>• Carbonate (Calcium Carbonate Precipitation)</td>
</tr>
<tr>
<td>and Pores</td>
<td></td>
</tr>
</tbody>
</table>

Figure 14. Physical and Chemical Factors Related to SRS FTF Cementitious Barriers Stability (SRS 2008)

![Diagram](NOT TO SCALE)

<table>
<thead>
<tr>
<th>LABEL</th>
<th>THICKNESS</th>
<th>MATERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>48”</td>
<td>Class C Concrete</td>
</tr>
<tr>
<td>B</td>
<td>30”</td>
<td>Class C Concrete</td>
</tr>
<tr>
<td>C</td>
<td>14”</td>
<td>Class C Concrete</td>
</tr>
<tr>
<td>D - Primary Liner</td>
<td>0.5”</td>
<td>Carbon Steel (Tank 25 - 38: ASTM A-516) (Tank 44 - 67: ASTM A-527)</td>
</tr>
<tr>
<td>G - Grouted Annulus</td>
<td>30”</td>
<td>Tank Fli Grout</td>
</tr>
</tbody>
</table>

Figure 15. SRS Type IIIA Tank Conceptual Model (SRS 2008)
The cementitious barriers serve multiple purposes based on the disposal unit. For CIG trenches, the cementitious material serves as a barrier to advective and diffusive transport. A CIG trench, shown in Figure 17, is an unlined trench in which a layer of grout is poured, waste is emplaced, and then the waste is covered by another grout layer. The components are surround by at least 15 cm of grout.

The ILV and LAWV concrete vaults and cementitious fill materials are used primarily as infiltration barriers. Failure of these barriers is determined by post closure structural analyses. Only advective transport is assumed for these vaults.

3.4.2.2 Parameter Assumptions and Conceptual Models

A variety of parameter assumptions and conceptual models were used in the E-Area PA. The one assumption used in the conceptual models for the various cementitious barriers is that the K_ds were a function of the number of pore flushes through the cementitious material. The grout in the CIG trenches was assumed to remain intact for 40 years, after which its hydraulic properties become those of the closure cap.
The hydraulic properties of intact vaults remained constant for both the ILV and LAWV. Structural analyses were performed which determined a cracking and collapse history for those vaults. Cracks were assumed to direct infiltration into the waste zones.

3.4.2.3 Relative Importance in Context of Assessment

The relative importance of the cementitious materials varied depending on the disposal unit. The grout in the CIG trenches is critically important as it is assumed to sufficiently contain tritium in the trench until it decays so that regulatory limits are maintained. The vaults of the ILV and LAWV exclude infiltration during the compliance period of DOE Order 435.1, but the structural analyses show that the vaults fail between 1,000 and 10,000 years.

3.4.3 Commercial Nuclear Facilities

Cementitious materials are used in a variety of applications for which the Nuclear Regulatory Commission (NRC) has regulatory oversight or independent technical review responsibilities. The types of applications include but are not limited to: cementitious barriers for near surface engineered waste disposal systems (e.g., waste forms and barriers, entombments, environmental restoration) and structural concrete components of nuclear facilities (spent fuel pools, dry spent fuel storage units, and recycling facilities e.g., fuel fabrication, separations processes). The approach to assessing the performance of cementitious materials in these applications varies from application to application. The following sections provide a summary of NRC experience in assessing the performance of cementitious materials for waste management applications (other applications are addressed in Section 2.3).

3.4.3.1 Overview

In the 1980’s, the NRC anticipated that cementitious materials may be used in waste disposal applications, primarily for the commercial disposal of low-level waste (LLW). The NRC sponsored research to estimate the degradation, modeling approaches, and hydrologic performance of concrete barriers (Walton et al. 1990, Walton & Seitz 1991, Walton 1992, Snyder and Clifton 1995). In addition, the NRC developed a waste form technical position, to convey technical guidance to prospective licensees on evaluating the performance of waste forms used for LLW disposal, some of which were expected to be cement stabilized wastes. More recently, the NRC is sponsoring research on the performance of cementitious materials. A summary of the research and the waste form technical position is provided below.

The waste form technical position provides guidance on waste form test methods and results acceptable to the NRC staff for implementing the 10 CFR Part 61 waste form requirements for disposal of low-level waste. The waste form was recognized to potentially serve a number of different functions, including but not limited to providing structural stability, reducing leachability of radionuclides, and reducing the dispersion of waste from inadvertent intrusion. The waste form technical position was initially issued in 1983, and later revised in 1991. The revision provided an appendix on cement stabilized waste forms, in part because portland and pozollonic cements were observed to exhibit unique chemical and physical
interactive behavior when used with certain chemicals and materials encountered in low-level waste streams (Picuilo et al. 1985, Soo & Milian 1989). Main processes considered were: compression (structural strength), thermal cycling, irradiation, biodegradation, and leaching. Guidance was provided for product qualification testing, sample preparation, full-scale testing, and surveillance specimens.

In addition to the waste form technical position, the NRC sponsored research to estimate the performance of concrete engineered barriers (see Table 2). The emphasis of the research was to develop techniques to quantify the expected long-term performance of cementitious engineered barriers. In some of the earlier work, Walton et al examined empirical relationships to estimate degradation of concrete, with emphasis on sulfate and magnesium attack, carbonation, freeze-thaw, and alkali-aggregate interaction (Walton et al. 1990). The latter two degradation mechanisms were expected to be managed through design processes and were not assessed quantitatively. In addition, fracturing of concrete structures via a variety of mechanisms or processes was anticipated. Additional research was completed to evaluate the performance of cracked and partially degraded concrete structures with respect to hydrology and mass transport (Walton 1992, Seitz & Walton 1993).

More recently, the Center for Nuclear Waste Regulatory Analyses (CNWRA) completed a literature review and assessment of factors relevant to the performance of grouted systems for radioactive waste disposal (Pabalan et al. 2009). The report includes: reviews of portland cement-based materials and their properties, discussions of degradation mechanisms, assessments of modeling approaches for predicting chemical degradation, and evaluations of conceptual and mathematical models that can be used to assess the effects of fast pathways and bypassing pathways on radionuclide release. Radionuclide release mechanisms were evaluated, along with data on solubility limits and data on permeability and diffusion properties of cement-based materials.

In 2002 and 2005, the NRC performed independent technical reviews of Department of Energy (DOE) non-HLW determinations for tank closure at the Idaho National Laboratory (INL) and for disposal of salt waste resulting from tank waste retrieval at the Savannah River Site (SRS) (NRC 2006b, NRC 2005). Under Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), the Secretary of Energy, in consultation with the U.S. Nuclear Regulatory Commission, may determine that certain radioactive waste resulting from reprocessing of spent nuclear fuel is not high-level waste. To facilitate risk-informing the independent technical reviews, the USNRC staff performed independent performance assessment modeling. A key aspect of that modeling has been the assessment of the performance of cementitious materials to stabilize radioactive waste. A brief summary of the modeling approaches is provided below.

3.4.3.2 INL Tank Closure Review

For tank closure at the Idaho National Laboratory, the NRC developed an abstracted source term model capable of representing a variety of system states for the cementitious material and residual stabilized waste (Esh et al. 2002). The residual radioactive waste was in solid and liquid forms in a thin layer on the tank walls and bottom. The stabilization strategy was to fill the tank with a cement formulation, comprised of cement, fly ash, and blast furnace slag, to limit water contact with the waste, provide structural stability, and modify the chemical environment to reduce the release rate of radionuclides. Because the site was semi-arid and water flow was expected to be limited by the natural environment, the USNRC analysis focused on the chemical aspects of the cementitious materials.

Radionuclides released from the waste were simulated to partition between the grout solid phase and cement-modified liquid phase. A key uncertainty was the long-term chemical conditions of the system. The model was developed to evaluate reducing
or oxidizing conditions for sorption and application of solubility limits, as well as aging of the grout. Different states of the system could be evaluated, but kinetics for the rate of change from one state to another was not incorporated in the model. The level of refinement in the model was sufficient to develop risk insights for the INL site because of the limited waste inventory in the tanks after cleaning and the semi-arid site conditions.

3.4.3.3 Savannah River Site Saltstone Review

Salt waste is disposed of at the saltstone disposal facility at the Savannah River Site by blending the waste with a mixture of cement, fly ash, and blast furnace slag and pumping the grout mixture as a slurry to large above-ground vaults (USNRC 2005). The resultant waste forms are large cementitious monoliths. The waste form contains blast furnace slag to create reducing conditions in the waste form. Reducing conditions are beneficial primarily because reduced forms of technetium typically are much less mobile than oxidized forms of technetium. USNRC performed independent analysis of the saltstone disposal facility in order to develop risk insights to inform their technical review (Esh et al. 2006).

Preliminary analyses, similar to what was completed in 2002 for the INL tank farm, indicated that the assumption regarding whether the waste would maintain a reducing environment or become oxidizing would have a significant effect on the predicted dose to a member of the public. Because this assumption had a significant effect on dose, and because the assumption that the waste is either entirely reducing or entirely oxidizing is unrealistic, the model was refined to reflect the oxidation of waste as a function of time. In addition, the model was refined with a submodel that predicts physical degradation of the waste as a function of time.

Waste oxidation and waste form degradation were modeled as proceeding from waste surfaces, including the surfaces of cracks, inward in a shrinking core type of representation (Esh et al. 2006). Waste form cracking may occur during curing, as a result of settlement, or as a result of other processes. The model did not attempt to predict the amount of cracking that will occur in the waste form. Instead, the potentially complex pattern of cracking in the waste form is represented in the model as a series of planar cracks through the waste, with the crack spacing being an important uncertain variable. At each fracture or exposed surface, an oxidation front and a degradation front were estimated to penetrate into the material. The oxidation and degradation fronts may propagate at different rates, resulting in different thicknesses of material that are oxidized and/or degraded. The degraded thickness as a function of time was estimated from an empirical model for sulfate and magnesium attack for lack of better information (Walton et al. 1990). The empirical models for waste form degradation and oxidation that were implemented in the performance assessment model did not necessarily represent the dominant mechanisms of degradation and oxidation of saltstone waste. Rather, the models served as a tool to evaluate time-dependent degradation or oxidation of the waste.

In the conceptual model, there were three regions in the waste form: intact, oxidized, and degraded. The predicted release of radionuclides from each region of waste was affected by the modeled physical and chemical properties of the waste in each region. The actual degraded waste form may have an extremely complicated collection of units of intact material with variable volumes and shapes. Consistent with the use of the PA model as a review tool, the potentially complicated geometry was simplified into three connected cells in the length dimension of the facility, one for each of the intact, oxidized, and degraded regions. The waste form was assumed to be broken into a series of blocks by fractures extending through the waste form. Therefore the results from the three cells were scaled up to represent the total number of blocks in the system based on the total length of the facility and the assigned fracture spacing. Infiltrating water was assumed to flow through the fractures, thereby
resulting in a zero concentration boundary condition at the exposed side of the waste form. Diffusive transport between the three regions of the waste form and from the waste form to the surrounding soil was represented in the model.

3.4.3.4 United States Nuclear Regulatory Commission Summary

NRC has sponsored research over the past several decades on the properties and performance of cementitious materials for a variety of different applications. In addition, independent performance assessment modeling has been performed to develop risk insights in order to risk inform the review of USDOE waste determinations. Irrespective of the research and analysis, key uncertainties remain, particularly with regards to long-term properties and performance.

The key uncertainties for waste management applications include: 1) the initial physical and chemical characteristics of the system, 2) the extent of fractures and their influence on performance, 3) the importance of interactions between processes that may accelerate or limit impacts, and 4) lack of long-term monitoring data and characterization of in-situ, large-scale systems.

4.0 OTHER TYPES OF RISK ASSESSMENTS

In the previous section, examples of PAs for engineered systems were described for various USDOE facilities that incorporate cementitious barriers. In this section, the summary is extended to examples of other types of risk assessments for USDOE facilities including the Idaho, Hanford, and Savannah River Sites. These examples will demonstrate the similarities and differences between PAs and other types of risk assessments performed to support other regulatory processes (e.g., CERCLA and RCRA).

4.1 Idaho Sites

4.1.1 Non-Time Critical Removal Action for the Engineering Test Reactor under CERCLA

The Engineering Test Reactor (ETR) located at the Idaho National Laboratory (INL) is in the process of being decommissioned (i.e., decontaminated and dismantled) by CH2M-WG Idaho, LLC (CWI) (USDOE-ID 2007). The decommissioning strategy includes removal of the pressure vessel, grouting and disposal of the vessel and internals at the INEEL CERCLA Disposal Facility (ICDF)\(^\text{30}\), and demolishing the reactor building to ground level (USDOE-ID 2007). This action is consistent with the joint USDOE/USEPA policy that established the CERCLA non-time-critical removal action for decommissioning (USDOE & USEPA 1995). On-site disposal of the ETR reactor vessel was justified using an iterative modeling approach involving multiple screening steps and a final risk assessment for the constituents that were not eliminated in the screening process (McCarthy 2006; Staley 2006)\(^\text{31}\). In September 2007, the pressure vessel was removed from the ETR, grouted, and finally disposed of at the ICDF\(^\text{32}\).

4.1.1.1 Role of Cementitious Barriers and Processes Considered

After transport to the ICDF, the remaining voids in the ETR pressure vessel were filled with a

\(^{30}\) The ETR vessel meets ICDF waste acceptance criteria for disposal as low-level radioactive waste (USDOE-ID 2007b).

\(^{31}\) The action met the remedial action objectives “regarding long-term risk, minimizes short-term worker risk and radiation exposure, reduces the footprint of waste sites at the INL, is cost effective, and provides a safe and stable configuration that is environmentally sound” (USDOE-ID 2007b).

\(^{32}\) A video of the relocation of the ETR is provided at Engineering Test Reactor (ETR) Vessel Relocated available at http://www.id.doe.gov/NEWS/PressReleases/PR071002.htm (accessed March 1, 2009).
cementitious grout as part of the disposal process. The performance assessment for the ICDF, where the ETR pressure vessel was grouted and disposed, uses the assumption that land-use controls prohibit future residential use, so there was no evaluation of risks to a future residential receptor (USDOE-ID 2007). Furthermore, by removing the pressure vessel and grouting the void volume in the vessel, the risks to a future resident were determined to be acceptable.

In the risk assessments for the ETR pressure vessel disposal, no hydraulic credit was taken for the cementitious materials employed. The ETR contaminant inventory was assumed to remain in place and the area was stabilized using native soil (McCarthy 2006; Staley 2006). The only credit taken for the cementitious materials was as a means to limit the potential for subsidence and resulting impacts on water flux by filling the voids in the pressure vessel.

Despite these assumptions, the risks were found to be acceptable if the ETR pressure vessel was removed. For groundwater impacts, the predicted groundwater concentrations satisfy the performance criteria for the site (McCarthy 2006). The maximum predicted cumulative risk to groundwater is 2×10^{-6}, which is dominated by C-14. The maximum cumulative fraction of nonradioactive concentration to the relevant maximum contaminant level (MCL), which is dominated by chromium, is a factor of six times less than the performance criteria of 1 (McCarthy 2006). For all remaining pathways, the cumulative risk associated with removing the pressure vessel translates to a cancer risk 3×10^{-7}, which satisfies the NCP criterion of 10^{-4} (Staley 2006). These acceptable predicted risks were based on the use of native soil to stabilize the area after removal of the ETR pressure vessel. The use of grout would likely produce lower risks than those predicted.

4.1.1.2 Important Assumptions and Conceptual Models

The important assumptions made to predict groundwater risks for the ETR pressure vessel disposal include (McCarthy 2006):

- Native soils (and not grout) are used to fill both the reactor and ETR basement.
- Any hydraulic effects of grouting the ETR vessel are ignored.
- Contaminants are loose in the soil and immediately available for leaching to the subsurface—no consideration is taken for waste forms.
- Contaminants are assumed to move down through the vadose zone sediments without retardation or horizontal spreading resulting in a shorter travel time from the ETR to the aquifer than would be expected.
- The receptor was assumed to be at the edge of the ETR facility.

For the screening assessment for the other pathways (i.e., non-groundwater), the important assumptions include (Staley 2006):

- Contaminants down to 3 m (10 feet) below-grade remaining after decontaminating and dismantling are mixed uniformly in the top 3 m of soil and will be available to an intruder in the year 2095.
- A receptor will build a house at the site of the removal action, 3 m of contaminated material will be excavated, and the excavated material will be spread across the surface of the housing site.

33 These criteria are designed to prevent contamination of the underlying sole-source aquifer to exceed a cumulative carcinogenic risk level of 10^{-4} or applicable State of Idaho groundwater quality standards (McCarthy 2006).
The receptor will live at the site for 30 years, including 6 years of childhood, and will be exposed to external radiation and to contamination through soil ingestion, fugitive dust inhalation, and ingestion of contaminated fruits and vegetables.

The primary conceptual model used in the more detailed phase of the groundwater risk screening for the ETR facility disposition is illustrated in Figure 18. This detailed screening used an implementation of the groundwater-screening model GWSCREEN and was intended to be conservative (Rood 1994). The assumptions made with intent to maximize groundwater risks in the screening included (McCarthy 2006):

- All radionuclides present in the ETR are mixed homogeneously with soil and placed in a volume represented by the volume of the ETR below-ground structure, 35 m × 35 m.
- There was no containment, engineered barriers, waste form impacts, or solubility-limited releases.
- Transport is one-dimensional in an 18-m (60-ft) thick unsaturated zone composed of sedimentary interbeds because flow through the fracture basalt is much faster.
- The receptor well is placed on the downgradient edge of the facility.
- The infiltration rate is 10 cm/yr (3.9 in/yr).
- There is no dispersion in the unsaturated zone, which may or may not be “conservative.”
- The aquifer is a homogeneous isotropic media of infinite lateral extent and finite thickness.
- Contaminants entering the aquifer mix with water in the aquifer over a depth defined by a typical well screen of 15 m (49.2 ft).

Therefore, no assumptions were made specifically pertaining to cementitious materials other than to assume that voids are sufficiently filled to preclude the potential for substantial amounts of subsidence that would significantly increase infiltration rates through the cover.

4.1.1.3 Relative Importance in Assessment

No credit was taken for grouting either the ETR pressure vessel (disposed of in the ICDF) or the area after its removal in estimating risks to a future residential receptor for all pathways (McCarthy 2006; Staley 2006). Despite these assumptions, the risks were found to be acceptable under CERCLA and other pertinent regulations for this disposal path. Therefore, the performance and properties of the grout actually used in disposal were inconsequential in the risk assessments and modeling performed to support disposal of the ETR pressure vessel and facility.

4.1.2 Radioactive Waste Management Complex under CERCLA

The Radioactive Waste Management Complex (RWMC) was created in 1952 for disposal of radioactive wastes at the USDOE Idaho Site. The complex consists of three major areas: the Subsurface Disposal Area (SDA), the Transuranic Storage Area, and the Administration and Operations Area. The SDA is the focus of remedial decision-making because buried waste is the primary source of contamination (USDOE-ID 2008).

A Record of Decision (ROD) has been completed for the final closure of the RWMC (USDOE-ID 2008). The final ROD was agreed upon based on an iterative set of baseline risk assessments and supporting studies performed under the CERCLA remedial investigation/feasibility study process (Becker et al. 1998; Holdren et al. 2006; Holdren et al. 2002). Whereas the previous example for disposition of the ETR pressure vessel took no credit for cementitious materials, contaminants in the RWMC were originally buried

34The initial contaminant screening phase relied on the screening techniques developed by the National Council on Radiation Protection and Measurements (NCRP) (NCRP 1996a; NCRP 1996b).
in containers, vaults, and cementitious waste forms, which have been accounted for in the risk assessments. Furthermore, beryllium reflector blocks from research reactors buried at the SDA were grouted using a paraffin-based grout under a CERCLA non-time-critical removal action35.

4.1.2.1 Role of Cementitious Barriers and Processes Considered

Earlier baseline risk assessments for the RWMC included taking some credit for diffusional releases of radionuclides from specific concrete waste forms (Becker et al. 1998; Holdren et al. 2002). In the final baseline risk assessment developed to support the RWMC remedial investigation and ROD, no credit was taken for the diffusional release from concrete waste forms or the effect of containment of contaminants in concrete casks (Anderson and Becker 2006; Holdren et al. 2006)36. Therefore, no credit was taken for cementitious materials in the context of the final baseline risk assessment performed to support the CERCLA remedial investigation process and the final ROD for the RWMC.

35The Acid Pit (Operable Unit 7-02) was also partially grouted in 1997 as part of a treatability study (Loomis et al. 1998a; Loomis et al. 1998b), which also limited potential impacts from mercury.

36However, for the risk assessment performed to support the RWMC feasibility study, thick-walled concrete containers were assumed to not fail during the assessment period and any contaminants in such containers were isolated from contact with infiltrating water and thus release and transport (Anderson and Becker 2006). However, no credit was taken for cementitious waste forms in the assessments to support either the remedial investigation or feasibility study under CERCLA.
4.1.2.2 Important Assumptions and Conceptual Models

Numerous assumptions for source-term and flow and transport modeling were made to predict potential impacts of contaminants in the RWMC during the baseline risk assessments. However, because cementitious materials are only involved in containing or immobilizing buried contaminants, only those assumptions pertinent to source-term conceptual model are provided. The pertinent source-term-related assumptions for the baseline risk assessment performed for the CERCLA remedial investigation include (Anderson and Becker 2006):

- Wastes are either buried without containers or in containers and contaminants not in containers are available for immediate release.
- Once a container fails, the remaining contaminants are available for release.
- Wastes in wooden or cardboard boxes are assumed loose due to the relatively short life span of such containers and all other waste containers are assumed to be steel drums. There are no concrete containers.
- Once the mass is released from the waste form, it is available for transport.

Cementitious materials were treated like soil for the purposes of source-term release using a surface-wash-type model for materials with surface contamination readily leached by infiltrating water where release is controlled by partitioning between the waste form and water. Because specific waste-to-water distribution coefficients (or in this case, concrete-to-water coefficients) were not known, soil-to-water distribution coefficients were used to simulate the releases (Anderson and Becker 2006).

4.1.2.3 Relative Importance in Context of Assessment

In the baseline risk assessment (BRA) for the remedial investigation (RI), any contaminants associated with concrete waste forms were treated as if they were in soil. Furthermore, any wastes that were originally buried in concrete containers were assumed to be either loose or in drums in the RI BRA although some credit was taken in the BRA performed for the RWMC feasibility study. Thus the performance and properties of cementitious materials were inconsequential in the risk assessment modeling for the RWMC.

4.1.3 Waste Calcining Facility Landfill Closure under RCRA and NEPA Environmental Assessment

The Waste Calcining Facility (WCF) is located at the Idaho Nuclear Technology and Engineering Center (INTEC) on the USDOE Idaho Site (USDOE-ID 2006). The WCF was used from 1963 to 1981 to calcine and evaporate aqueous wastes generated from reprocessing spent nuclear fuel. In 1998, the WCF was closed under an approved Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) Closure Plan (INEL 1996). Because it was found not practical to clean close the WCF, the vessels, cells, and waste pile were grouted and covered with a concrete cap. In 2003 the Idaho Department of Environmental Quality issued a final HWMA/RCRA post-closure permit.

This method of closing a RCRA facility (as a landfill) with mixed waste liabilities was innovative and well suited to closing highly radioactive process facilities which involve great expense and removal/remediation.

37 The INTEC Waste Calcining Facility (WCF) on the Idaho Site is often referred to as the “Old Waste Calcining Facility” in deference to a newer calcining facility located on the USDOE Idaho Site.

38 Grouting was not required for structural support of the cap.
of large volumes of waste (Demmer et al. 1999). Regulations for the WCF waste piles require preparation of closure and post-closure plans, and the State of Idaho wanted the risk of release to be consistent with the Federal Facilities Agreement/Consent Order (FFA/CO) remedial goals for INTEC. The USDOE assessed the radionuclide risks in parallel with the RCRA closure for hazardous constituents (Demmer et al. 1999). The USDOE also assessed the WCF landfill closure using an Environmental Assessment (EA) to evaluate potential risks associated with hazardous and radioactive constituents.

4.1.3.1 Role of Cementitious Barriers and Processes Considered

The risk assessment developed to support the WCF closure was also innovative. Characterization efforts were often hampered because some WCF areas were highly radioactive and process equipment was located in areas with severely limited access (Demmer et al. 1999). Thus a model was developed based on conservative assumptions to represent process conditions and residual contaminants at closure. The conservative model predictions were then used for source-term characterization.

The primary impact of cementitious materials on the WCF risk assessment was expressed in the modeling performed to estimate risks from ingestion of contaminated groundwater. Transport modeling for the groundwater pathway was performed in two phases:

- A screening phase which was based on conservative assumptions (i.e., no concrete cap or grouting) using the GWSCREEN model (Rood 1994).
- A detailed phase which took credit for both grouting within the WCF and the concrete cap using the PORFLOW transport model (ACRi 2002).

In the detailed modeling phase, the concrete is assumed to crack and water will enter the waste leaching contaminants, which are then transported into the surrounding soil.

4.1.3.2 Important Assumptions and Conceptual Models

The model used to predict residual levels of both radioactive and hazardous contaminants at the time of closure was based on conservative assumptions (Demmer et al. 1999). Major assumptions included:

- There were no organic constituents (or corresponding risks to human health or the environment) in the process residues found in vessels and piping or on the cell floors because of dry conditions and high process temperatures.
- The majority of the residual material was from the final “zirconium” campaign.
- All radionuclides were decayed from the time of the last WCF campaign to provide conservative values.
- Conservative estimates for hazardous chemicals that may have been used in the WCF were used for the source term.

In the risk assessment, two exposure scenarios were evaluated for human health risk evaluation: (1) current occupational and (2) 30-year future resident. For these receptors, the conceptual site model identified three possible pathways: groundwater ingestion,
dermal contact with contaminated groundwater, and external exposure42. For the current occupational scenario, the external exposure pathway was evaluated. For the future resident, both the external exposure and groundwater ingestion pathways were evaluated. The potential impact of cementitious materials was considered in the groundwater transport modeling to estimate health risks to the future resident.

4.1.3.3 Relative Importance in Context of Assessment

As described above, the modeling performed for groundwater transport was performed in two phases: screening and a more detailed analysis (Demmer et al. 1999)43. Based on screening model results (assuming no grouting or cap), the maximum concentrations for all hazardous constituents and all but four radionuclides had risks below the NCP target risk of 10^{-6}. The other four radionuclides (i.e., Np-237, Pu-239, Pu-240, and Tc-99) had maximum concentrations within the NCP target risk range of 10^{-6} to 10^{-4}. These four radionuclides were then evaluated using the more refined transport model that took credit for the concrete cap and WCF grout including cracking.

The maximum predicted groundwater concentrations from the more detailed model translated into ingestion risks below the NCP 10^{-6} risk limit for Np-237, Pu-239, and Pu-240. The corresponding ingestion risk for Tc-99 was slightly above the 10^{-6} limit and approximately two orders of magnitude lower than the upper NCP risk limit of 10^{-4}. Furthermore, the maximum predicted groundwater concentration for Tc-99 was significantly less than the proposed maximum concentration for drinking water. Thus, the cementitious materials had a significant impact on the predicted groundwater concentrations and corresponding risks for the WCF landfill closure. However, in the typical CERCLA sense, the predicted risks when no cementitious materials are employed satisfy the upper bound risk level of 10^{-4} and the impact of cementitious materials can be considered to provide additional assurance that the WCF landfill closure would be protective of human health.

4.2 Savannah River Site

4.2.1 Tanks 17-F and 20-F Closure Actions under SCDHEC Industrial Wastewater Permits and NEPA Environmental Impact Statement

Since the 1950s, the 51 tanks in the F- and H-Area Tank Farms on the Savannah River Site (SRS) have received high-level radioactive waste generated by various SRS production, processing, and laboratory facilities. These tanks are permitted under a waste water operating permit and will be closed under this permit (Picha et al. 1999)44. In 1995 the USDOE began to prepare for closure of the high-level waste (HLW) tanks by preparing both a closure plan (SRS 1996) and an Environmental Assessment (under NEPA) to evaluate alternatives for the closure of SRS HLW tanks (USDOE-SR 1996a). The result of the NEPA EA evaluation process was a Finding of No Significant Impact (FONSI) (signed in 1996) in which it was concluded that closure of the HLW tanks in accordance with the closure plan would not result in significant environmental impacts (USDOE-SR 1996b).

42 No toxicities were available for dermal contact with contaminated groundwater so this pathway was not evaluated in the assessment (Demmer et al. 1999).

43 The same modeling results were used to support analysis of remedial alternatives in the environmental assessment for the WCF (USDOE-ID 1996).

44 The primary regulatory driver for the removal of wastes from the HLW tanks at SRS is the FFA/CO (WSRC 1993) between USDOE-SR, the state of South Carolina, and the USEPA (Picha et al. 1999). The regulation governing closure is SC Regulation R.61-82, “Proper Closeout of Wastewater Treatment Facilities,” which is intended for typical wastewater facilities and “provides virtually no guidance applicable to HLW tank closure” (USDOE 1999).
SRS HLW Tanks 17-F and 20-F were operationally closed in 1996 under South Carolina Department of Health and Environmental Control (SCDHEC) industrial wastewater permits (SRS 1997a; SRS 1997b). These tanks were selected because they were known to have relatively low levels of residual radioactive waste (Picha et al. 1999). Bulk waste was removed to less than 113,550 L (30,000 gal)\(^{45}\). After heel removal, approximately 3,785 L (1,000 gal) gallons of residual waste was left in the tank (Elmore and Henderson 2002). Grouting of the tanks for closure was carried out in three stages. A reducing grout was initially added to mix with residual waste to stabilize it as well as possible. A large layer of a controlled low-strength grout material was then added and finally each tank was capped by the addition of a high-strength grout (Picha et al. 1999).

4.2.1.1 Role of Cementitious Barriers and Processes Considered

The risk evaluations that demonstrated that tank closures result in configurations that ensure overall protection of human health and the environment are provided in the closure modules (SRS 1997a; SRS 1997b). The risk evaluation for the SRS Tank 17-F closure is provided as an example and is similar to the one for Tank 20-F. The fate and transport modeling and corresponding risk analyses provide assurance that this tank closure will be protective of human and ecological receptors under reasonable land use controls (SRS 1997a).

The primary impact of cementitious materials on the tank closure risk analysis was in modeling fate and transport of residual contaminants from the grouted material to the aquifers and ultimately receptors. Transport modeling for the groundwater pathway was performed using the Multimedia Environmental Pollutant Assessment System (MEPAS) computer code (Droppo et al. 1989). Credit was taken for the cementitious material (i.e., grout) after tank closure for two distinct periods (see Table 4): an initial 1,000-year period when the basemat, grout, and tank top were assumed undegraded and then a “failed” period after 1,000 years when each layer was assumed to have instantaneously and completely failed resulting in corresponding increases in hydraulic conductivities (SRS 1997a).

Table 4. Properties Impacted by Failure (at 1,000 years) for the Tank 17-F Model (SRS 1997a)

<table>
<thead>
<tr>
<th>Simulation time (yrs)</th>
<th>Basemat Hydraulic conductivity (cm/yr)</th>
<th>Infiltration rate (cm/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 1,000</td>
<td>9.6E-09</td>
<td>4</td>
</tr>
<tr>
<td>1,000 – 10,000</td>
<td>6.63E-03</td>
<td>40</td>
</tr>
</tbody>
</table>

4.2.1.2 Important Assumptions and Conceptual Models

The fate and transport modeling performed to support tank closure modeling was based on the following assumptions (SRS 1997a):

- An institutional control for 100 years and then industrial land use.
- The assessment area where receptors may be exposed remains in commercial/industrial use for the entire 10,000-year assessment period.
- There is no credible scenario for the transport of contaminants to the atmosphere and so this transport pathway was not analyzed.
- Ponding above the contaminated waste zone does not occur.

\(^{45}\) A waste determination indicated that tank closures would satisfy incidental waste criteria (Picha et al. 1999).
The release of contaminants from the grout in the tank is controlled by a grout-water partition coefficient model. The tank and internal piping are assumed filled with a strongly reducing grout with constant partition coefficients over the entire simulation period.

Site-specific exposure parameters were used when available although many default parameters in MEPAS were used.

Potential exposure impacts were predicted for an adult worker, a teenage intruder, a nearby adult resident, and a nearby child resident. Receptors may be exposed via various surface pathways.

Upon closure, a tank is filled with grout and no engineered structures will be used to reduce infiltrating water. Example distribution coefficients and material properties assumed for cement-based materials are provide in Tables 5 and 6, respectively.

In the PA modeling, an infiltration rate of 4 cm/yr was used prior to failure, and a rate of 40 cm/yr used after the grout and basemat failure (SRS 1997a). Based on the SRS E-Area vaults performance assessment (Cook and Hunt 1994), a conservative assumption was made that the basemat, grout, and tank top fail at 1,000 years with resulting increases in hydraulic conductivities (SRS 1997a). An engineered cover over the tank after closure was not evaluated.

4.2.1.3 Relative Importance in Context of Assessment

In the risk analyses to support the Tank 17-F closure fate and transport modeling, cementitious materials (i.e., grout and concrete) are considered in two important areas over differing time periods. In the initial, undegraded period of 1,000 yrs, the concrete basemat has a relatively low hydraulic conductivity (1x10^{-8} cm/s) and the infiltration rate is assumed to be 4 cm/yr. At a simulation time of 1,000 years, the concrete tank top, grout fill, and concrete basemat are assumed to fail instantaneously resulting in changes to both the hydraulic conductivity of the basemat (to 1 x 10^{-2} cm/s) and infiltration rate through the grout (to 40 cm/s). The tank and internal piping are assumed filled with a strongly reducing grout during the entire simulation (SRS 1997a).

The results of the MEPAS simulation using the aforementioned assumptions indicated that none of the contaminants (i.e., radiological and hazardous) were predicted to violate any performance objectives. For radiological concerns, the Tc-99 was the dominant contributor to the radiation dose to the receptors. The seepline concentrations remained low and the predicted gross alpha concentrations in both groundwater and surface water remained well below any of the performance objectives during the 10,000-yr simulation period (SRS 1997a).

Because no simulations were run without consideration of cementitious materials, it is difficult to characterize the specific impacts of these materials on the modeling results. The simulation results indicate that the maximum predicted lifetime cancer risk for various receptors exceeds the NCP 10^{-6} cancer risk limit when taking credit for cementitious materials. Thus it is likely that not taking credit for these materials will result in predictions that violate performance objectives. In addition, the properties and performance of the cementitious materials are important factors in the risk analysis. However, reducing the uncertainties

46 An ecological risk assessment was also performed for tank closure.
47 Previous modeling of tank closure scenarios demonstrated that a cap over a grout-filled tank is likely to have little impact at the point of exposure (SRS 1997a). Impacts for a grout-filled tank with a cover can be assumed to be the same as for a grout-filled tank with no cover with an appropriate delay.
48 The excess water produced under these conditions is assumed to run off (e.g., over the side) so that ponding above the contaminated waste zone does not occur (SRS 1997a).
49 Similar results were found in the Tank 20-F risk analysis supporting closure (SRS 1997b).
Overview of the U.S. Department of Energy and Nuclear Regulatory Commission Performance Assessment Approaches

Table 5. Selected Radionuclide and Chemical Partition Coefficients (K_d) Used in the Tank 17-F Model (SRS 1997a)

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>SRS Soil (cm3/g)</th>
<th>Note</th>
<th>Reducing contaminated zone (cm3/g)</th>
<th>Note</th>
<th>Reducing concrete</th>
<th>Note</th>
<th>Clay (cm3/g)</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>14C</td>
<td>2</td>
<td>a</td>
<td>0.1</td>
<td>b,c</td>
<td>0.1</td>
<td>c</td>
<td>1</td>
<td>d</td>
</tr>
<tr>
<td>$^{244},^{245}$Cm</td>
<td>150</td>
<td>a</td>
<td>5000</td>
<td>c</td>
<td>5000</td>
<td>c</td>
<td>8400</td>
<td>d</td>
</tr>
<tr>
<td>129I</td>
<td>0.6</td>
<td>a</td>
<td>2</td>
<td>c</td>
<td>2</td>
<td>c</td>
<td>1</td>
<td>d</td>
</tr>
<tr>
<td>Tritium</td>
<td>0</td>
<td>a</td>
<td>0</td>
<td>c</td>
<td>0</td>
<td>c</td>
<td>0</td>
<td>d</td>
</tr>
<tr>
<td>237Np</td>
<td>10</td>
<td>a</td>
<td>5000</td>
<td>c</td>
<td>5000</td>
<td>c</td>
<td>55</td>
<td>d</td>
</tr>
<tr>
<td>238,238,240,241,242Pu</td>
<td>100</td>
<td>a</td>
<td>N/A</td>
<td>j</td>
<td>N/A</td>
<td>j</td>
<td>5100</td>
<td>d</td>
</tr>
<tr>
<td>79Se</td>
<td>5</td>
<td>a</td>
<td>0.1</td>
<td>c</td>
<td>0.1</td>
<td>c</td>
<td>740</td>
<td>d</td>
</tr>
<tr>
<td>99Tc</td>
<td>0.36</td>
<td>a</td>
<td>1000</td>
<td>c</td>
<td>1000</td>
<td>c</td>
<td>1</td>
<td>d</td>
</tr>
<tr>
<td>Ba</td>
<td>530</td>
<td>e</td>
<td>1</td>
<td>c,h</td>
<td>1</td>
<td>c,h</td>
<td>16000</td>
<td>g</td>
</tr>
<tr>
<td>Cr(VI)</td>
<td>16.8</td>
<td>e,i</td>
<td>7.9</td>
<td>f,i</td>
<td>7.9</td>
<td>f,i</td>
<td>360</td>
<td>g,i</td>
</tr>
<tr>
<td>Pb</td>
<td>234</td>
<td>e</td>
<td>500</td>
<td>c</td>
<td>500</td>
<td>c</td>
<td>1830</td>
<td>g</td>
</tr>
<tr>
<td>Hg</td>
<td>322</td>
<td>e</td>
<td>5280</td>
<td>f</td>
<td>5280</td>
<td>f</td>
<td>5280</td>
<td>g</td>
</tr>
<tr>
<td>Nitrate</td>
<td>0</td>
<td>e</td>
<td>0</td>
<td>f</td>
<td>0</td>
<td>f</td>
<td>0</td>
<td>g</td>
</tr>
<tr>
<td>Ag</td>
<td>0.4</td>
<td>e</td>
<td>1</td>
<td>c</td>
<td>1</td>
<td>c</td>
<td>40</td>
<td>g</td>
</tr>
<tr>
<td>U</td>
<td>50</td>
<td>a</td>
<td>N/A</td>
<td>j</td>
<td>N/A</td>
<td>j</td>
<td>1600</td>
<td>d</td>
</tr>
</tbody>
</table>

a. WSRC (1994) value for soil
b. Assumed similar to selenium
d. WSRC (1994) value for clay
e. MEPAS Default (soil < 10% clay and pH 5-9)
f. MEPAS Default (soil > 30% clay and pH > 9)
g. MEPAS Default (soil > 30% clay and pH 5-9)
h. Assumed the same as strontium (Bradbury and Sarott 1995)
i. All chromium modeled as Cr(VI)
j. Solubility limit used to estimate K_d (WSRC 1994)
and conservatism introduced into the modeling of cementitious materials in the risk analysis would result in more accurate predictions that might again demonstrate compliance with performance objectives for the tank closure. Increased accuracy in modeling cementitious barriers is one goal of the CBP.

4.2.2 P Reactor In-Situ Decommissioning under CERCLA

The P-Reactor facility is being decommissioned under the CERCLA process. A risk assessment was conducted as one input for the selection of the preferred closure option for closure in the feasibility study (Council 2008). The risk assessment included consideration of concrete and grout material properties that were assumed to degrade over time. This section includes a brief summary of the approach adopted to assess performance of the concrete and grout materials for the reactor vessel portion of the facility. Similar assessments were conducted for the other major features in the facility.

4.2.2.1 Role of Cementitious Barriers and Processes Considered

The concrete and grout are assumed to function as physical and chemical barriers. Hydraulic conductivity and distribution coefficients are assumed to change with time, in general degrading the performance of the barriers. Cracks are not specifically modeled and are represented as changes in the bulk hydraulic conductivity of the porous media.

4.2.2.2 Important Assumptions and Conceptual Models

The concrete and grout fill are assumed to behave as porous media and are represented in a one dimensional manner as shown in Figure 19. Material properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Concrete Basemat</th>
<th>Vadose Zone</th>
<th>Water Table Aquifer</th>
<th>Tan Clay Layer</th>
<th>Barnwell-McBean Aquifer</th>
<th>Green Clay Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intact</td>
<td>Failed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thickness (cm)</td>
<td>1.5</td>
<td>1.5</td>
<td>13.7</td>
<td>101.6</td>
<td>7.6</td>
<td>152.4</td>
</tr>
<tr>
<td>Bulk density (g/cm³)</td>
<td>2.21</td>
<td>1.64</td>
<td>1.59</td>
<td>1.59</td>
<td>1.36</td>
<td>1.59</td>
</tr>
<tr>
<td>Total porosity</td>
<td>0.15</td>
<td>0.38</td>
<td>0.35</td>
<td>0.35</td>
<td>0.40</td>
<td>0.35</td>
</tr>
<tr>
<td>Field capacity</td>
<td>0.15</td>
<td>0.09</td>
<td>0.12</td>
<td>0.35</td>
<td>0.334</td>
<td>0.35</td>
</tr>
<tr>
<td>Longitudinal dispersion (cm)</td>
<td>0.18</td>
<td>0.18</td>
<td>1.6</td>
<td>12.2</td>
<td>0.91</td>
<td>18.3</td>
</tr>
<tr>
<td>Vertical hydraulic conductivity (cm/s)</td>
<td>9.6E-09</td>
<td>6.63E-03</td>
<td>7.1E-03</td>
<td>7.1E-03</td>
<td>1.6E-06</td>
<td>5.6E-04</td>
</tr>
</tbody>
</table>

Table 6. MEPAS Groundwater Parameters for Vadose and Saturated Zones for the Tank 17-F Model (SRS 1997a)
Figure 19. Conceptual Model for P Reactor Vessel (Council 2008)
for the concrete and grout were based on representative values from data used for the F-Tank Farm PA. A summary of the assumed initial values for porosity, particle density, and hydraulic conductivity is provided in Table 7.

The saturated hydraulic conductivity is assumed to change as a function of time according to an exponential function with an assumed half-life of 500 years. The hydraulic conductivity is assumed to increase half way to its maximum value on a log scale for each 500-year time period.

From a chemical barrier perspective, the performance of the concrete and grout fill is represented via distribution coefficients. Distribution coefficients are assumed to change as the concrete or grout ages. The changes in distribution coefficients are assumed to occur based on the number of pore volumes of fluid that pass through a given region of the domain. The number of pore volumes for transitions between the three different stages of degradation are based on assumptions in the F-Tank Farm PA model. For the probabilistic assessment, best-estimate and conservative values are used to define normally distributed inputs. The best-estimate is used as the mean and the standard deviation is calculated from one half of the difference between the mean and conservative value.

Table 7. Example Input Parameter Values for P-Reactor Risk Assessment

<table>
<thead>
<tr>
<th></th>
<th>Mean (default)</th>
<th>Distribution</th>
<th>Std Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porosity</td>
<td>0.168</td>
<td>Normal</td>
<td>0.02</td>
</tr>
<tr>
<td>Particle Density</td>
<td>2.51 g/cm³</td>
<td>Deterministic</td>
<td></td>
</tr>
<tr>
<td>Initial Hydraulic Conductivity</td>
<td>3.5×10^{-8} cm/s</td>
<td>Log-normal</td>
<td>10</td>
</tr>
<tr>
<td>Grout</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porosity</td>
<td>0.266</td>
<td>Normal</td>
<td>0.02</td>
</tr>
<tr>
<td>Particle Density</td>
<td>2.51 g/cm³</td>
<td>Deterministic</td>
<td></td>
</tr>
<tr>
<td>Initial Hydraulic Conductivity</td>
<td>3.6×10^{-8} cm/s</td>
<td>Log-normal</td>
<td>10</td>
</tr>
</tbody>
</table>

Note: Mean and standard deviation are geometric for the lognormal distribution.

4.2.2.3 Relative Importance in Context of Assessment

The corrosion rate assumed for the stainless steel reactor vessel was the most sensitive parameter in the model, but the assumed distribution coefficient for Ni was also shown to be important resulting in increased doses at earlier times for lower values. Both of those parameters are linked to the projected dose from Ni-59, which was the primary dose contributor. Cementitious materials were not important contributors to the results other than serving to limit the potential for subsidence which could result in significant localized increases in infiltration.
4.3 Hanford Site

4.3.1 221-U Facility Remedial Actions under CERCLA and NEPA

The 221-U Facility is one of three canyon buildings originally constructed in the 200-Area in the mid-1940s to extract plutonium from fuel rods irradiated in Hanford Site reactors (USDOE-RL 2005). However, the facility was never used for plutonium extraction because existing facilities were available to meet production goals. The 221-U Facility was used to train plant operators until 1952 when it was converted to a tributyl phosphate (TBP) process to recover uranium from bismuth phosphate process wastes (USDOE-RL 2001a). The facility was placed in standby in 1958 and subsequently retired; all process hardware remained inside the building.

The selected remedy for the facility includes waste removal from vessels and equipment, removal and treatment of liquids, grouting of internal vessel spaces, demolition of various structures followed by stabilization to support an engineered barrier, construction of the barrier, institutional controls, barrier inspection and maintenance, and barrier performance and groundwater monitoring. These remedial actions will protect human health and the environment based on an industrial use scenario (USDOE-RL 2005).

Because entombment alternatives were considered for the 221-U Facility that would essentially create a low-level waste disposal unit, the requirements of USDOE Order 435.1 (Radioactive Waste Management) apply. These requirements were considered after the CERCLA ROD was issued (Bilson 2001). In the CERCLA process developed for the 221-U Facility, National Environmental Policy Act (NEPA) values were considered to evaluate the potential environmental consequences of the proposed remedial alternatives. These values included potential effects on transportation resources, air quality, cultural and historical resources, noise, visual, and aesthetic impacts, environmental justice, and socioeconomic impacts (USDOE-RL 2001a). Each of these values was evaluated as part of the final feasibility study for the 221-U Facility.

The Washington State Department of Ecology established that the CERCLA Remedial Investigation/Feasibility Study process would be used to evaluate potential remedial actions and identify preferred remedial alternatives for the five canyon buildings in the 200 Area (USDOE-RL 2005). The Canyon Disposition Initiative (CDI) was designed to help identify end states and evaluate the potential for safe disposal of wastes from other Hanford cleanup actions in the 200 Area canyons (USDOE-RL 2005)50. The 221-U Facility will serve as the pilot for the other Hanford canyon buildings, which will be addressed under CERCLA remedial or non-time critical removal actions in accordance with appropriate CERCLA, RCRA, and NEPA review processes (USDOE-RL 2005).

4.3.1.1 Role of Cementitious Barriers and Processes Considered

Consistent with past practices at the USDOE Hanford Site (Thompson 1991), a traditional remedial investigation including a baseline risk assessment was not performed for the 221-U Facility so that additional resources could be focused on the remedial action phase (USDOE-RL 2001a). Instead risk analyses were performed to define baseline and closure conditions. Preliminary remediation goals (PRGs) were also provided in the final feasibility study report for the 221-U Facility (USDOE-RL 2001a). These calculations were performed using the RESidual RADioactivity (RESRAD) code (Yu et al. 2001) for

Overview of the U.S. Department of Energy and Nuclear Regulatory Commission Performance Assessment Approaches

radionuclide doses. The non-carcinogenic human health risks from hazardous chemicals were predicted using the equations in the Hanford Site Risk Assessment Methodology (HSRAM) (USDOE 1995). The final feasibility study indicated that the risks due to the contaminants in the 221-U Facility were unacceptable based on CERCLA requirements and ARARs. However, the selected remedial alternative (i.e., Close in Place – Partially Demolished Structure) would be protective of human health and the environment for an industrial land use scenario as long as the surface barrier remains intact (USDOE-RL 2005).

The results of the assessment indicated that the selected remedial alternative for the 221-U Facility was based primarily on the long-term effectiveness of the engineered cap that will be constructed over the facility after the structure is demolished and vessels are grouted in-place (USDOE-RL 2001a). No credit was taken for cementitious materials in the modeling performed to support the ROD for the 221-U Facility.

4.3.1.2 Important Assumptions and Conceptual Models

The maximum baseline risks for the 221-U Facility were predicted for the industrial use scenario. To evaluate human health risks for the industrial use scenario, the following assumptions were made (USDOE-RL 2005):

- Adult workers are exposed.
- The site is under industrial-exclusive use for the first 50 years after closure and industrial use for at least 100 years after that.
- Direct exposure to onsite workers is from residual contamination to a depth of 4.6 m (15 ft).
- The exposure pathways for calculating radionuclide risks include: 1) direct exposure, 2) soil ingestion, and 3) inhalation.
- Standard exposure assumptions from the relevant USEPA guidance are applicable.

Therefore, no assumptions used to predicted the baseline risks pertain to the use of cementitious materials or their properties even though the vessels in the 221-U Facility will be grouted prior to emplacement of an engineered surface barrier.

4.3.1.3 Relative Importance in Context of Assessment

In the fate and transport modeling and risk analysis performed to support the ROD for the Hanford 221-U Facility, no credit was taken for cementitious barriers (i.e., grout) (USDOE-RL 2001a; USDOE-RL 2005). The selected alternative is predicted to be protective of human health and the environment as long as the engineered barrier remains effective. The only credit taken for cementitious materials (grouting process vessels prior to cap placement) is as a “defense-in-depth” measure in case the engineered barrier fails during the 1,000-year simulation period (USDOE-RL 2005). Therefore, the properties and performance of the cementitious materials used in the remedial actions selected for 221-U facility are not relatively important; they only provide defense-in-depth.

4.3.2 Tank Waste Remediation System Final EIS under NEPA

The National Environmental Policy Act (NEPA) requires Federal agencies to evaluate potential environmental impacts of proposed actions to promote public awareness, provide for public involvement, and aid in decision-making. Examples in this section illustrates that NEPA Environmental Assessments have been developed in conjunction with, or to support, CERCLA and State assessments. However, none included an Environmental Impact Statement (EIS). The NEPA EIS assessment process is important enough to be described in this example.

The USDOE is responsible for waste management and environmental restoration at the Hanford Site...
Overview of the U.S. Department of Energy and Nuclear Regulatory Commission Performance Assessment Approaches near Richland, Washington. The proposed action analyzed below is for the management and ultimate disposal of wastes in the Tank Waste Remediation System (TWRS) (USDOE-RL 1996). From 1943 to 1989, the principal mission was the production of weapons-grade plutonium. The associated chemical separations processes resulted in large volumes of radioactive wastes. These wastes are stored in 177 large underground tanks in the Hanford 200 Areas (including 28 double-shell tanks and 149 single-shell tanks) and 60 smaller active and inactive underground tanks.

Hanford is a large USDOE site residing in a semi-arid region near Richland, Washington. Almost half a million people live within an 80-kilometer (50-mile) radius of the site (USDOE-RL 1996). Agricultural land borders the site except to the southeast where the city of Richland is located. The Columbia River, which is used for irrigation and drinking water, flows through the northern area of the Site and forms part of its eastern boundary (USDOE-RL 1996). Groundwater flows beneath the 200 Areas at depths ranging from 70 to 90 + meters (230 to 300 + feet). Past practices have resulted in extensive contamination in the soils beneath the 200 Areas especially near waste management facilities and locations of unplanned releases. These contaminants have migrated to the groundwater and toward the Columbia River (USDOE-RL 1996).

4.3.2.1 Role of Cementitious Barriers and Processes Considered

The National Environmental Policy Act (Pub. L. 91-190) was the first of the new major environmental laws enacted in the U.S. in response to growing concerns about environmental pollution and quality. NEPA provides the foundation for inserting environmental considerations into federal decision-making and established the U.S. national environmental policies (CEQ 2007).

An EIS must be prepared if a proposed major federal action may significantly affect the quality of the human environment. A draft EIS is prepared for public comment. The focal point of the EIS is the alternatives analysis. Substantive comments are addressed in the final EIS.

The NEPA process at Hanford resulted in the development of an EIS to consider safe storage and disposal alternatives for the tank wastes. The focus of the EIS was an alternatives analysis. Alternatives were selected to represent the wide range of possibilities for Hanford tank wastes and can be grouped into the following categories based on the extent of waste retrieval as illustrated in Figure 20 (USDOE-RL 1996):

- **Continued Management**: Two alternatives were analyzed: one without replacing double-shell tanks and the other with replacing these tanks and upgrading tank farm systems to provide long-term management. No retrieval would be performed for these alternatives.

- **Minimal Retrieval**: Only liquid wastes would be retrieved from the double-shell tanks and concentrated with concentrated wastes returned to the tanks. Solid waste would be disposed of in-place. Two alternatives were analyzed: one without treatment and one with in-tank treatment.

- **Partial Retrieval**: The tank wastes with the fewest potential environmental impacts would be disposed of in situ and the liquid and solid wastes with the greatest potential long-term groundwater impacts would be retrieved from the tanks for immobilization and disposal. Retrieved wastes would be separated into low-activity and high-level wastes. Low-activity wastes would be immobilized and disposed of onsite in near-surface concrete vaults covered with a cap. High-level wastes would also be immobilized and stored onsite for eventual disposal in a geologic repository. Two partial retrieval alternatives were analyzed: one reducing long-term human health risk by approximately 90 percent and the other by 85 percent.

- **Extensive Retrieval**: Practically all solid and liquid wastes would be retrieved and separated into low- and high-level fractions. The waste treatment and disposal methods are the same as the partial...
retrieval alternatives. Three alternatives were analyzed with different levels of separations. A fourth alternative evaluating the implementation of the extensive retrieval alternative in phases was also analyzed.

The TWRS EIS was prepared to support the decisions that must be made concerning safe storage and disposal of Hanford tank wastes (USDOE-RL 1996). One potential option for treating low-activity tank wastes upon retrieval is grouting; another is vitrification. Vitrification is also proposed for high-level wastes retrieved from the tanks. The EIS proposed that empty waste tanks be grouted instead of being removed entirely51.

4.3.2.2 Important Assumptions and Conceptual Models

The EIS is typically posed at a higher level of analysis than the risk assessments performed under regulatory processes like CERCLA and RCRA although often the assessment processes are integrated (Shedrow et al. 1993). To allow for meaningful comparisons of the Hanford TWRS alternatives, a single and consistent method of closure was assumed. This method was closure as a landfill, which includes placing an earthen cap over the tanks after remedial actions have been completed (USDOE-RL 1996). The actual closure method selected will impact releases to the groundwater from residual waste and potential

51The USDOE plans to address tank farm closure issues in a second EIS to address alternatives for closing the tank farms that would look at these issues in much greater detail (USDOE-RL 1996).
health effects and the disturbances at potential earthen borrow sites (USDOE-RL 1996).

The TWRS EIS also incorporated the assumption that immobilized high-level waste produced from retrieval and treatment actions would be disposed of at the candidate geologic repository at Yucca Mountain, Nevada (USDOE-RL 1996), which until recently was the only site under consideration. However, funding for Yucca Mountain has been cut and it may no longer be an option. Environmental impacts occurring at the repository are not addressed in this EIS but will be addressed when the new alternatives for spent nuclear fuel and high-level wastes are defined.

One assumption made for the use of cementitious materials is that grouting (physical and chemical stabilization) would produce acceptable waste forms for the ex situ treatment of retrieved Hanford tank wastes and is thus a viable alternative for consideration. The EIS identified grouting as the preferred alternative for certain tank wastes. The second primary assumption is that grouting (physical stabilization of the tank and the chemical stabilization of the residual waste) would also be acceptable for tank closure after waste removal has been completed.

4.3.2.3 Relative Importance in Context of Assessment

The relative importance of cementitious materials to the alternatives evaluated in the TWRS EIS varies depending on whether these materials are used to close tanks or treat retrieved wastes. For example, grouting has already been applied to the operational closure of two former high-level waste tanks at the Savannah River Site (as described in the examples) and is the preferred method for closing high-level waste tanks at both Savannah River and Hanford. A more significant impact of cementitious materials is on the potential ex situ treatment of retrieved wastes from Hanford tanks. For example, solidification using a cementitious grout has been used at the Savannah River Site to treat low-activity wastes for disposal in the onsite Saltstone facility. Grout is a common treatment technology that has been employed in the management of hazardous and radioactive waste.

On the other hand, the Hanford Tri-Party Agreement specified vitrification as the preferred treatment method for low-activity wastes at Hanford based partially on the relative risks of the two treatment methods and not necessarily the acceptability of the risks provided by the methods. The CBP goal of providing more accurate predictions to be made when cementitious barriers are used in disposal could have a large impact in the future on safe and more economic treatment of retrieved wastes possibly including low-activity waste from Hanford.

4.4 Commercial Nuclear Facilities

4.4.1 Big Rock Point Decommissioning under the USNRC License Termination Rule and Environmental Assessment

The Big Rock Point Nuclear Power Plant near Charlevoix, Michigan was initially a research and development center to study life extension and efficiencies of different nuclear fuel combinations and to prove that large power reactors could be reliably used to generate electricity (ITRC 2008). In 1962, Big Rock Point became the nation’s fifth commercial nuclear plant and the world’s first “boiling water, direct-cycle, forced-circulation, high-power-density”

52Grouting tank wastes has been studied extensively at the Hanford and Savannah River sites for LAW disposal. Grouting was originally selected as the preferred treatment method for LAW in the Hanford Defense Waste EIS although the Tri-Party Agreement changed the method to vitrification. Hanford LAW included liquid tank waste (after separation) and secondary waste from the HLW vitrification facility.

53The risks of vitrified low-activity waste may be lower than those for the same wastes in an appropriate grouted form; however, this does not necessarily mean that the risks from the grouted waste form are unacceptable.
nuclear reactor facility to produce power (ITRC 2008). In 1997, it was determined that the small size of the plant made continuing operations uneconomic and that operations would be ceased even though there were still three years remaining on its license. When shut down in August 1997, Big Rock Point was the “oldest and longest-running nuclear plant in the United States” (ITRC 2008). The process for decommissioning the Big Rock Point facility was begun shortly after the plant was shut down.

Because of the small footprint of the Big Rock Point nuclear facility and the high value of the land, a “Greenfield” approach was selected for decommissioning (EPRI 2004). Before the plant was dismantled, the contaminated areas and components were decontaminated (Tompkins 2006). The spent fuel was removed to the spent fuel pool (and later to an independent spent fuel storage installation) allowing dismantlement to begin. The reactor vessel was removed whole, placed in an approved transportation cask, grouted using a low-density cellular concrete, and transported to the Chem-Nuclear Systems, L.L.C., Barnwell, SC low-level waste disposal facility. The steam drum was removed and shipped by rail to the Envirocare Facility in Utah. The concrete reactor cavity inside the containment sphere was cut into pieces and the ventilation stack was dismantled. By April 2006, the containment sphere and turbine building were also demolished. More than 53 million pounds of low-level waste were shipped to disposal facilities in South Carolina, Tennessee, and Utah, and more than 59 million pounds of nonradioactive building materials were shipped to an industrial landfill in Michigan.

The company holding a reactor license must seek USNRC permission to decommission a facility. A Post-Shutdown Decommissioning Activities Report (PSDAR) must be submitted that describes how environmental impacts from decommissioning activities will be assessed. An application for termination of the license must be submitted to the USNRC for approval and to be accompanied by the License Termination Plan (LTP). The licensee must also demonstrate that the requirements of the License Termination Rule (LTR) (10 CFR §20.1401 et seq.) will be satisfied.

Because the intent was to release the Big Rock Point site for unrestricted use after decommissioning, the USNRC prepared an environmental assessment (EA) to evaluate potential environmental impacts (both radiological and non-radiological) (USNRC 2005).

4.4.1.1 Role of Cementitious Barriers and Processes Considered

The USNRC regulates the release of contaminated solid materials including building concrete from licensed facilities on a case-by-case basis (NAS 2002; USNRC 2003b). Such material can be removed if the facility license is terminated based on meeting the 0.25 mSv/yr (25 mrem/yr) LTR dose limit for unrestricted use (10 CFR §20.1402). The RESidual RADioactivity (RESRAD) code (Yu et al. 2001) was used to perform the dose analyses needed to support the unrestricted release of the Big Rock Point site (BRPRP 2005; CEC 2004). However, because contaminated concrete and other building debris obtained after dismantling and demolition was shipped off-site for disposal, these cementitious materials were not considered in the dose modeling using RESRAD.

54 In a “Greenfield” approach, all structures including those below grade (e.g., foundations and basements) are demolished and disposed of off-site.
55 The independent spent fuel storage installation is the only structure remaining on-site after decommissioning.
56 One unique aspect of the decommissioning approach was gaining approval under the alternate disposal regulations (10 CFR 20.2002) to ship slightly contaminated debris (including concrete) to a State of Michigan licensed landfill resulting in significant cost savings (EPRI 2004).
57 Both point-value and probabilistic computations were performed using RESRAD to support the development of Derived Concentration Guideline Levels (DCGLs) for the Final Status Survey. The probabilistic analyses were primarily used for parameter-sensitivity analysis to identify those parameters important to the assessment.
The only area where cementitious materials impacted the analyses to support decommissioning of the Big Rock Point facility was for the dose assessment for transportation of the reactor pressure vessel to the Chem-Nuclear Systems, L.L.C, Barnwell, SC Low-Level Disposal Facility. The pressure vessel was removed as a unit and placed in a new transportation cask, which was filled with a low density cellular concrete and welded shut. A series of dose calculations were performed using the Microshield and ISOSHLD-PC codes58 to demonstrate the design of the new transportation cask complied with all of the 10 CFR 71 criteria for a Type B package (BNFL 2001). In these dose calculations, credit was taken for the concrete used to fill voids in the pressure vessel as well as the annular space between the vessel and package. The computations demonstrated that the package satisfied the 10 CFR 71 criteria for a Type B package (BNFL 2001), which was confirmed by the USNRC (USNRC 2002).

4.4.1.2 Important Assumptions and Conceptual Models

The dose assessments performed to support the license termination plan for the Big Rock Point (including defining DCGLs for the final survey) were predicated on a modified resident farmer scenario using the RESRAD code (Yu et al. 2001). In this scenario, the receptor is exposed to residual radioactive material in the surficial and subsurface soils as well as in three groundwater zones at maximum concentration levels. The farmer moves onto the site after closure, grows his or her diet in a garden, and uses water from the aquifer under the site. The additional assumptions made to evaluate doses to the resident farmer include (CEC 2004):

- Residual radioactive contamination is found in the surface soil, subsurface soil, and three groundwater zones.
- Residency can occur immediately after release of the property.
- The property will not be used for livestock or dairy animal production.
- Radioactive doses can result from exposure via external exposure, inhalation, and ingestion pathways.

Assumptions were made to intentionally overestimate the doses to the resident farmer. The results of the dose assessment allowed the concrete and debris from decommissioning activities to be sent to off-site disposal units and the final survey (when compared to the DCGLs) allowed the USNRC to release the Big Rock point site for unrestricted use. However, none of the assumptions made to perform the dose assessments to support the license termination plan involved cementitious materials or their properties.

A separate dose assessment was performed to demonstrate that the design of the transportation cask used to transport the Big Rock Point reactor pressure vessel to the Barnwell disposal facility complied with all of the 10 CFR 71 criteria for a Type B package. In these dose calculations using ISOSHLD-PC, important assumptions included (BNFL 2001):

- The relative radionuclide abundances from the Trojan Nuclear reactor vessel activation activities provide a reliable and complete radionuclide profile for the Big Rock Point reactor vessel assembly and internals (RVAI). Use of the Trojan radionuclide abundances result in conservative estimates for shield thickness because the Trojan

58The most recent version of the Microshield code can be found at http://www.radiationsoftware.com/ (accessed March 20, 2009). The ISOSHLD code is described at http://www.nea.fr/abs/html/ccc-0079.html (accessed March 20, 2009). ISOSHLD can model complex geometries and thus provide more accurate dose rates than Microshield, which was used to verify the ISOSHLD output (BNFL 2001).
Overview of the U.S. Department of Energy and Nuclear Regulatory Commission Performance Assessment Approaches

Co-60 inventory is higher and this is the dominant radiation source for shielding calculations.
- The annular region between the RV AI and the transport cask steel shielding is filled with low density cellular concrete with a minimum density of 800 kg/m³ (50 lb/ft³). The concrete in the RV AI will have a minimum density of 480 kg/m³ (30 lb/ft³). Gamma dose rates are inversely proportional to the shield material density so the use of denser concrete would result in lower dose rates than those obtained in this assessment.
- All reactor vessel components are made of 304 stainless steel, the vessel wall is made of carbon steel, and the shield material for the transport package is made of pure iron.
- Radionuclide activity is homogeneously distributed within the component or component portion under study.
- The radiation source term includes 1 curie from surface contamination with the same radionuclide distribution as that used for activation source terms.

In summary, shielding credit was taken for the low density cellular concrete used to fill voids in the pressure vessel and the annular space between the reactor vessel and package. The computations demonstrated that the package satisfied the 10 CFR 71 criteria for a Type B package (BNFL 2001), which was independently confirmed by the USNRC (USNRC 2002).

4.4.1.3 Relative Importance in Context of Assessment

In the model and dose assessments performed to support the Big Rock Point license termination plan and demonstrate that the requirements of the LTR were met, cementitious materials (i.e., low density cellular concrete) were considered. The detailed shielding calculations that were used as the basis for demonstrating that the transport package used for the reactor pressure vessel satisfied 10 CFR 71 criteria took credit for the cement both in the reactor vessel and in the annular space between the vessel and the package (BNFL 2001). In August 2003, the reactor vessel was removed, placed in the transport package, the voids and annular space were filled with concrete, the package was welded shut, and the package containing the reactor vessel was shipped to Barnwell, SC where it was disposed of as low-level waste in October 2003. On the other hand, because a “Greenfield” approach was taken to decommissioning the Big Rock Point facility and all concrete and other debris was to be disposed of off-site, no impacts from these cementitious materials were included in the dose assessments used to demonstrate compliance with the LTR requirements for unrestricted release. In 2007, the USNRC released most of the Big Rock Point Nuclear Plant site for unrestricted public use.

To demonstrate compliance with 10 CFR 71 criteria, dose rates for both shielded and unshielded conditions are determined at 1 and 3 meters from the package. Both sets of calculations took credit for concrete in the reactor vessel; however, no credit was taken for concrete in the annular space for unshielded dose rates. Because no shielding calculations were run without consideration of cementitious materials, it is difficult to characterize the specific impacts of these materials on the dose rate results. However, the amount of concrete in the reactor vessel voids probably had a small shielding impact relative to the assumptions made for the source term (specifically Co-60).

59The residual radioactive source term for Big Rock Point reactor vessel was well below the Chem-Nuclear Systems, L.L.C, Barnwell, SC disposal limit of 40,000 Curies (BNFL 2001) so the concrete inside the reactor pressure vessel and transport package was not accounted for in terms of the disposal itself.
4.4.2 Spent Fuel Pools

Spent nuclear fuel pools are constructed to meet USNRC requirements, and typically are 9 to 18 m (30 to 60 feet) long, 6 to 12 m (20 to 40 feet) wide, and 12 m (40 feet) deep with 1.2- to 1.8-m (4- to 6-foot) thick steel-lined concrete walls and floors (GAO 2005). Commercial nuclear power reactors in the United States are of two basic types: boiling water or pressurized water reactors. The spent fuel pools tend to be located in different areas for the two reactor types. For boiling water reactors, pools tend to be located above ground near the reactor as illustrated in Figure 21. Pools tend to be located in external structures on or partially embedded in the ground for pressurized water reactor as illustrated in Figure 22. Regardless of reactor type or location, the storage pools must be constructed to protect the public against radiation exposure.

The decommissioning of the Big Rock Point nuclear facility provides an example of how a spent nuclear fuel pool may be decommissioned as part of the overall strategy for the facility. In that case, the storage racks and pool liner were completely removed as part of the overall plan and the site was released by the USNRC for unrestricted use under a “Greenfield” approach to decommissioning. Credit for cementitious materials was accounted for only in the certification of the transport package used to ship the reactor pressure vessel to the Barnwell low-level waste disposal facility in South Carolina. However, it may also be possible to decommission a spent fuel pool separately from the remainder of the nuclear facility.

The Unit 1 Spent Fuel Pool at the Dresden Nuclear Power Station in Grundy County, Illinois was decommissioned using an innovative underwater coating technique developed by the Idaho National Laboratory (INL) for spent fuels pools on the Idaho Site (Demmer et al. 2006). At the Idaho Site, four spent fuel pools have either been decommissioned or are in the process using this method. Dresden Generating Station Unit 1, which began operations in 1960, was the first full-scale, privately-financed nuclear plant in the US. Dresden Station Unit 1 was retired in 1978 and has been declared a Nuclear Historic Landmark. Unit 1 is a boiling water reactor with a spent fuel pool that is assumed to be in the configuration indicated in Figure 21 making a “Greenfield” approach to decommissioning the fuel pool impossible.

In 2004, Exelon decided to reduce the risk of further fuel pool leakage by cleaning, draining, and coating the spent fuel pool (Demmer et al. 2006). The original Exelon approach was to use long-handed tools and coat the pool as the water level was decreased. This approach posed significant health and safety concerns from potentially high levels of airborne contamination over the long period of time it would require to drain and coat the pool. The INL approach that had been successfully used onsite consists of applying an epoxy-based coating to the pools and floors while underwater. Thus the INL method, while also requiring extensive environmental, health, safety, and engineering efforts including an underwater team with nuclear experience greatly reduced airborne contamination and corresponding health concerns. The INL option...

60A boiling water reactor uses steam generated in the reactor to drive a turbine and generate electricity; the steam condenses to water that is returned to the reactor repeating the cycle. On the other hand, a pressurized water reactor sends pressurized water to a steam generator creating nonradioactive steam in a separate loop. The slightly radioactive water returns to the reactor where the cycle is repeated (USGAO 2005).

62Decontamination of the primary system was completed in 1984 and spent fuel and storage equipment were removed from the pool with the remainder of the decommissioning work until the other two operating units at the Dresden Station have reached the end of their licenses. See http://www.nrc.gov/info-finder/decommissioning/power-reactor/dresden-nuclear-power-station-unit-1.html (accessed March 20, 2009).
Overview of the U.S. Department of Energy and Nuclear Regulatory Commission Performance Assessment Approaches

Figure 21. Boiling Water Reactor (BWR) Spent Fuel Cooling Systems
(Reproduced from Ibarra et al. 1997)

Figure 22. Pressurized Water Reactor (PWR) Spent Fuel Cooling Systems
(Reproduced from Ibarra et al. 1997)
did not appear at first to be safer from industrial and radiological perspectives, but INL has demonstrated statistically that the method is safe (Demmer et al. 2006). The INL method was successfully used to decommission the Dresden Unit 1 Spent Fuel Pool. Because decommissioning of the Dresden Unit 1 Spent Fuel Pool involved the application of an epoxy-based coating to the walls and floor while underwater, there was no role to be played in the dose or hazard assessments for the cementitious materials comprising the storage pool.

From a cursory examination of the dose assessments that have been performed to support decommissioning activities for spent nuclear fuel pools, it appears that including the cementitious components into the models would not significantly impact the decisions made. However, when alternatives are considered that may leave contaminated cementitious materials onsite analogous to the entombment activities at the Idaho and Hanford site, the explicit representation and accuracy of the properties and performance of cementitious materials may become critical factors in the decision-making process.

4.4.2.1 Containment Performance for Spent Nuclear Fuel Pools

Apart from decommissioning considerations, cementitious materials may also be considered when assessing the risks and doses posed to the general public from the reactor facility, and in this case, the spent fuel storage facilities. The two primary sources of potential exposures to the general public from a commercial nuclear facility are the reactor core and the spent nuclear fuel storage facility (e.g., dry cask or pool storage). Historically, the probabilistic risk assessments performed for commercial reactors have concentrated on loss-of-coolant accidents (LOCA) because these accidents have a higher probability and would result in the most catastrophic consequences (USNRC 1975).

However, probabilistic risk assessments for commercial nuclear reactors have considered the consequences of accidents involving the spent nuclear fuel storage pools (especially those involving a loss of water in the pool). Improvements in the ability to characterize the structural and thermal properties may improve the assessment of consequences (e.g., doses to the public) from these accident events. However, the likelihood of these events is typically very low and thus the ability to better assess the magnitude of contaminant releases associated with the occurrence of an accident appears limited in affecting decisions concerning spent fuel pools.

Spent nuclear fuel pool leakage has resulted in the release of radioactive water to the environment at several NPP’s. For example, in July 2005, seepage from the spent nuclear fuel pool was observed at the Palo Verde NPP site. Blocked lines in the spent nuclear fuel pool caused water to back up and leak through two adjacent concrete walls.

Again in 2005, leakage of radioactive water was identified from the Unit 2 spent nuclear fuel pool at the Indian Point NPP. A hairline crack with moisture was discovered along the south concrete wall of the spent nuclear fuel pool. Although initial samples did not detect any radioactivity, a month later contamination was first detected in a sample from the crack. A second crack was discovered two weeks later and a temporary collection device was installed to capture leaking liquid. Analysis of the moisture indicated that the material had the same radiological and chemical properties as pool water. Leak from the crack increased to a maximum of 1-2 liters per day and remained stable declining to a minimal amount three months later.

To assess the resulting contamination, the Indian Point licensee contracted geotechnical and groundwater consultants to assist in mapping the contaminant plumes. Based on the studies, the licensee concluded
that the releases did not pose a risk to public health, and at the most may have resulted in a radiation dose to the public of well below 1 mrem for tritium. For strontium-90 releases, the dose may be higher but still below the NRC’s 10 CFR Part 50, Appendix 1 ALARA values.

In 2003, tritium was detected in shallow ground water on-site near the Salem Unit 1 NPP. Contaminated water leaked through a concrete wall into the Unit 1 Auxiliary Building. The contamination was due to Unit 1 pool water that had leaked into a narrow “seismic gap” and entered the Auxiliary Building. The source of the abnormal release was identified as clogged drains in the Salem Unit 1 spent nuclear fuel pool. Later, the clogged drains were repaired which stopped the leak. The licensee has reported that there is no evidence of tritium concentrations exceeding limits.

5.0 SUMMARY OF MODELING APPROACHES

A broad perspective of different approaches for considering performance of cementitious barriers in PAs and PA-like analyses serves as a good illustration of the need for improved communication and sharing of knowledge. The examples provided perspective regarding the frequency with which conservative, simplifying assumptions are made in lieu of trying to defend the assumptions necessary to take credit for specific degradation processes. This appeared to be the case more often in PA-like assessments rather than traditional PAs, which reflects the fact that PAs have been dealing with cementitious barriers as part of disposal facilities for many years. People from other regulatory environments traditionally have focused on clean-up situations, where cementitious barriers are not as important. To provide some additional focus on the PA-like regulatory environment, a brief summary of the regulations is provided below. This is followed by a summary of the examples and a comparison of the approaches used.

5.1 Overview of Regulations for PA-Like Analyses

The cornerstones of the USDOE authority to manage and regulate radioactive wastes are the Atomic Energy Act (AEA) and Nuclear Waste Policy Act (NWPA). However, these laws are not the sole applicable federal statutes (NAS 2006). Additional legislation including CERCLA, RCRA, and the NEPA and correlative state and local laws may also play important roles. The relevant considerations under these additional statutes often go well beyond and adopt different practices than the AEA or NWPA, and more importantly are not administered by the USDOE but instead by the USEPA and the states (NAS 2006). Whereas PAs are required under DOE 435.1, 10 CFR 61, Section 3116 and the AEA, the other laws require different types of assessments. Because the License Termination Rule (LTR; 10 CFR Part 20 Subpart E), which is administered by the USNRC, also does not require a performance assessment, it was also examined in this section.

The laws related to PA-like analyses that do not require a formal performance assessment are listed along with the assessment methods in Table 8.

Because multiple laws (including CERCLA, RCRA, and NEPA) may be applicable to the same contaminated site, numerous policies have been adopted in the DOE Complex for integrating these laws and their assessments (Cook 2002; Shedrow et al. 1993; USDOE 1994a). The performance of NEPA environmental assessments and impact statements are part of the decommissioning process and demonstration of compliance with the LTR.

For the three laws administered by the USEPA, there are no specific legal requirements regarding the approaches that must be used for assessments when cementitious barriers are present. Although NEPA does require that all “reasonable” alternatives be considered during the Environmental Impact Statement
Table 8. Summary of Regulations Relevant for PA-Like Analyses

<table>
<thead>
<tr>
<th>Regulation</th>
<th>Description</th>
<th>Assessment-Related Requirements</th>
<th>Requirements for Cementitious Barriers</th>
</tr>
</thead>
</table>
| Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) | Agency: USEPA
Purpose: identify and remediate sites where hazardous substances were, or could be, released into the environment
Applies: all Federal agencies | Preliminary site assessment
Remedial investigation (RI) and Baseline risk assessment
Feasibility study (FS)
Record of Decision (ROD) | No specific requirements.
Credit may be taken per guidance documents |
| Resource Conservation and Recovery Act (RCRA) (Subtitle C) | Agency: USEPA
Purpose: protect human health and environment via comprehensive approach to hazardous and solid waste management at operating facilities
Applies: hazardous waste treatment, storage, or disposal facilities and transporters of hazardous wastes | RCRA Facility Assessment (RFA)
RCRA Facility Investigation (RFI)
Corrective Measures Study (CMS) and corrective measure selection
Corrective Measures Implementation | No specific requirements.
Credit may be taken per guidance documents |
| National Environmental Policy Act (NEPA) | Agency: USEPA
Purpose: insert environmental considerations into federal decision-making and increase public involvement
Applies: all Federal agencies in Executive branch | CATegorical EXclusion (CATEX)
Environmental Assessment (EA) and
Finding of No Significant Impact (FONSI)
Environmental Impact Statements (EIS) including Draft EIS for public comment, Final EIS, and ROD—focus is on the alternatives analysis | No specific requirements.
Requires all “reasonable” alternatives be considered for EIS |
| License Termination Rule (10 CFR Part 20 Subpart E) | Agency: USNRC
Purpose: provide radiological criteria for license termination
Applies: decommissioning of facilities (or parts of facilities) licensed by USNRC | Dose assessment for restricted release or unrestricted release of facility | No specific requirements for dose assessment, but detailed guidance is provided in NUREG-1757.
Release of contaminated solid materials regulated on a case-by-case basis |
Overview of the U.S. Department of Energy and Nuclear Regulatory Commission Performance Assessment Approaches

(EIS) process. The EIS is where alternatives including barriers or grouting are often considered for action and evaluation. Demonstration of compliance with the USNRC LTR requires a dose assessment for either unrestricted release (i.e., dose < 0.25 mSv/yr per 10 CFR §20.1402) or for restricted release when meeting certain conditions (10 CFR §20.1403(a)-(e)). There are no specific requirements for cementitious materials when performing the LTR dose assessment to determine site release characteristics.<ref>However, there are specific requirements imposed by the USNRC on the release of contaminated solid materials including building concrete from licensed facilities. Such material can be removed if the facility license is terminated based on meeting the 0.25 mSv/yr (25 mrem/yr) LTR dose limit for unrestricted use (10 CFR §20.1402).

One type of assessment that is common to the CERCLA, RCRA, NEPA, and LTR can be conceptualized as an exposure assessment over various pathways from which either the dose or risk to a critical receptor (or receptors) is estimated. Because the conversions from exposure or intake dose to response (e.g., cancer risk or total effective dose equivalent) are determined by regulatory fiat, the primary factors determining dose or risk are the exposures. Thus the key assumptions and parameters in the risk and dose assessments often pertain to the necessary exposure modeling including the source term and release characteristics, fate and transport, and exposure scenario (e.g., resident or intruder), which are essentially the same as what is considered for a PA.

5.2 Summary of Approaches Used for Cementitious Barriers

Examples are provided demonstrating how risk and dose assessments have been performed to support the management of LLW disposal facilities, D&D of large facilities, remediation of contaminated sites at DOE and other facilities. The assessments vary in terms of source and release assumptions, transport pathways modeled, exposure scenarios, and whether dose or risk limits are mandated. As illustrated in Table 9, the credit taken for cementitious materials in the modeling performed to support the assessments typically impacts the allowable source term, release, and near field transport conditions. Of the various approaches represented in this section, tiered and iterative approaches consistent with CERCLA guidance (USEPA 1989a) and with PA recommendations from the DOE, NRC, and IAEA are considered excellent practice (Brown 2008).

Given that cementitious materials are engineered features, the key assumptions tend to be related to the source release and near field transport. In the examples provided in this section, the credit taken for cementitious materials ranged from no credit to considerable credit for physical and chemical properties, including timing of degradation. A summary of information from the examples is provided in Table 9.

One consistent theme running through the various dose and risk assessments performed in the example cases presented in this section was that gross simplifying assumptions were often made even when cementitious materials were considered in the assessment process. Conservative assumptions were often made because of a lack of site and facility-specific information for the cementitious materials or for expediency to avoid having to defend the assumptions associated with more detailed consideration. Since the results were acceptable as is, it was not deemed necessary to delve into more detail. This approach works well for many cases, but such assumptions add conservatism that could limit potential future activities.

The examples show that cementitious materials provide two different functions: (i.e., physical barriers and chemical barriers). In general, the role as a physical barrier is shorter-term than the role as a chemical barrier. This is consistent with the findings of Seitz and Walton (1993) that recommended that
Overview of the U.S. Department of Energy and Nuclear Regulatory Commission Performance Assessment Approaches

Table 9. Summary of Examples of Assessments

<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
<th>Role of Cementitious Barriers and Processes</th>
<th>Important Assumptions and Conceptual Models</th>
<th>Relative Importance of Cementitious Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEC Tank Farm (Idaho Site)</td>
<td>Tank Closure under Section 3116. Tanks cleaned to maximum extent practicable and filled with grout.</td>
<td>Voids in tanks filled with grout, many tanks surrounded by concrete walls. Cementitious materials assumed to serve as physical and chemical barriers.</td>
<td>Multiple degradation mechanisms quantitatively assessed. Physical failure of concrete represented as step change in hydraulic conductivity. Timing based on conservative degradation scenario. Chemistry assumed unchanged.</td>
<td>Reducing conditions in cementitious materials were significant factor. Hydraulic properties important early, but degradation expected to occur later than assumed.</td>
</tr>
<tr>
<td>Radioactive Waste Management Complex (Idaho Site)</td>
<td>LLW disposal facility managed in accordance with DOE Order 435.1.</td>
<td>Cementitious materials used in vaults and containers. No credit taken for cementitious materials, except releases are diffusion controlled for one type of concrete cask container.</td>
<td>Diffusion assumed to occur without considering tortuosity or chemical effects.</td>
<td>Diffusion controlled release with conservative diffusion rate was sufficient to demonstrate compliance for cask containers. No credit needed for other cementitious barriers.</td>
</tr>
<tr>
<td>Integrated Disposal Facility (Hanford Site)</td>
<td>Combination LLW and RCRA waste disposal facility managed respectively under DOE Order 435.1 and RCRA.</td>
<td>“Treated” LLW form assumed to be grouted. Diffusion controlled release assumed for grouted waste.</td>
<td>Most probable and conservative diffusion coefficients were developed for each key species. The diffusion coefficients account for tortuosity and chemical reactions in the cementitious material.</td>
<td>Diffusion controlled release sufficient to contain radionuclides. Overall grouted waste not a major contributor.</td>
</tr>
<tr>
<td>Solid Waste Storage Area 6 (Oak Ridge)</td>
<td>LLW disposal facility managed in accordance with DOE Order 435.1.</td>
<td>Cement silos and tumulus pads with concrete containers used for disposal. Cementitious materials are assumed to function as physical and chemical barriers.</td>
<td>Detailed coupled structural and degradation modeling conducted to predict onset of cracking, which is assumed to compromise role as a physical barrier in a step change. Diffusion and chemical reactions in cementitious materials also considered with K_d,s and solubilities.</td>
<td>Results were shown to be sensitive to several parameters associated with cementitious materials. Performance was deemed sufficient, even with assumption of total failure as a physical barrier at the onset of cracking.</td>
</tr>
</tbody>
</table>
Table 9. Summary of Examples of Assessments (contd)

<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
<th>Role of Cementitious Barriers and Processes</th>
<th>Important Assumptions and Conceptual Models</th>
<th>Relative Importance of Cementitious Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>F Tank Farm (Savannah River Site)</td>
<td>Tank Closure being conducted under Section 3116</td>
<td>Multiple tank designs, in general with steel liners inside concrete walls and tanks filled with grout after cleaning. Cementitious materials assumed to serve as physical barrier to water flow and to chemically limit releases of radionuclides and also to delay onset of corrosion of steel tank.</td>
<td>Multiple degradation mechanisms were considered, including physical changes and chemical changes in the cementitious materials. Distributions of degradation times were developed for changes in hydraulic conductivity and for changes from reducing to oxidizing conditions.</td>
<td>Results were dependent on performance of the cementitious materials in delaying the onset of corrosion of the steel tank. The chemical properties of the cementitious materials were important after failure of the tank.</td>
</tr>
<tr>
<td>E-Area (Savannah River Site)</td>
<td>LLW disposal facility managed in accordance with DOE Order 435.1</td>
<td>Multiple disposal concepts using different types of cementitious barriers. Cementitious materials serve as physical and chemical barriers. Cracking is assumed to compromise performance as a physical barrier.</td>
<td>Structural and degradation models were used to determine timing of cracking and failure of cementitious materials. Transitions from reducing to oxidizing conditions were also calculated.</td>
<td>The grout used for components in grout trenches was important in terms of limiting releases of tritium. The vault walls are assumed to maintain a physical barrier until after the time of compliance, which precludes significant releases.</td>
</tr>
<tr>
<td>Engineering Test Reactor (Idaho Site)</td>
<td>Decommissioning under a non-time-critical CERCLA removal action. ETR reactor vessel removed and disposed on-site</td>
<td>Voids in pressure vessel were filled with grout for on-site disposal. Credit taken as a means to limit subsidence and resulting impact on water movement through cap.</td>
<td>None made specific to cementitious materials other than voids are filled to preclude subsidence that would increase infiltration rate through the cover.</td>
<td>Performance and properties of the grout actually used in disposal were inconsequential in the risk assessments and modeling performed.</td>
</tr>
<tr>
<td>Radioactive Waste Management Complex (Idaho Site)</td>
<td>Closure under the CERCLA remedial investigation/feasibility study (RI/FS) process</td>
<td>No credit taken for diffusional release from concrete or the effect of containment in concrete casks in final baseline risk assessment. Some credit taken in previous assessments.</td>
<td>Cement forms treated as soil for modeling release for materials with surface contamination leached by infiltrating water and controlled by partitioning between the waste form and water.</td>
<td>Performance and properties of cementitious materials were inconsequential in the risk assessment modeling.</td>
</tr>
</tbody>
</table>
Overview of the U.S. Department of Energy and Nuclear Regulatory Commission Performance Assessment Approaches

Example Description

Role of Cementitious Barriers and Processes

Important Assumptions and Conceptual Models

Relative Importance of Cementitious Materials

<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
<th>Role of Cementitious Barriers and Processes</th>
<th>Important Assumptions and Conceptual Models</th>
<th>Relative Importance of Cementitious Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste Calcining Facility (Idaho Site)</td>
<td>Landfill closure under RCRA supported by NEPA Environmental Assessment (EA)</td>
<td>Credit taken in detailed modeling phase (using PORFLOW) for grouting and concrete cap including cracking. No credit taken in initial screening phase (using GWSCREEN).</td>
<td>In the detailed modeling phase, cementitious materials impact source release and transport when estimating risks to the future resident.</td>
<td>Significant impact on predicted groundwater concentrations and risks and provided assurance that landfill closure would be protective of human health.</td>
</tr>
<tr>
<td>Tanks 17-F and 20-F (Savannah River Site)</td>
<td>Operational closure under SCDHEC industrial wastewater permits supported by NEPA Environmental Impact Statement (EIS)</td>
<td>Credit taken for grout and concrete in modeling fate and transport (using MEPAS) of residual contaminants from grout to the aquifers and receptors.</td>
<td>Basemat, grout, and tank top remain intact for 1,000 years and then fail instantaneously resulting in significant increases in hydraulic conductivities and infiltration rate.</td>
<td>Not taking credit would likely result in predictions that violate performance objectives—properties and performance of these materials likely important to the risk analysis.</td>
</tr>
<tr>
<td>P Reactor (Savannah River Site)</td>
<td>In-Situ Decommissioning under CERCLA</td>
<td>Concrete and grout are physical and chemical barriers controlled by the assumed hydraulic conductivity and distribution coefficients.</td>
<td>Concrete and grout behave as porous media. Hydraulic conductivity changes as a function of time. Distribution change as concrete or grout ages.</td>
<td>Grout-water distribution coefficient for Ni was also shown to be important to risk.</td>
</tr>
<tr>
<td>221-U Facility (Hanford Site)</td>
<td>CERCLA RI/FS process used to evaluate potential actions and identify preferred alternatives supported by inclusion of NEPA values in process</td>
<td>Credit taken for grouting as a “defense-in-depth” measure if the engineered barrier fails during the 1,000-yr simulation period</td>
<td>No assumptions pertain to the use of cementitious materials or their properties even though vessels will be grouted prior to cap emplacement.</td>
<td>Properties and performance of these materials are not relatively important; they only provide defense-in-depth.</td>
</tr>
<tr>
<td>Tank Waste Remediation System (Hanford Site)</td>
<td>NEPA EIS needed because of potential environmental impacts for proposed actions concerning the management and disposal of Hanford tank wastes</td>
<td>A potential option for treating retrieved low-activity tank wastes is grouting and the EIS proposes that empty waste tanks be grouted instead of being removed entirely.</td>
<td>Grouting would produce acceptable waste forms for ex situ treatment of wastes and would be acceptable for tank closure after waste removal operations are complete.</td>
<td>Use of these materials for disposal could have a large impact in the future, safe and economic treatment of retrieved wastes possibly including Hanford LAW.</td>
</tr>
</tbody>
</table>
Table 9. Summary of Examples of Assessments (contd)

<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
<th>Role of Cementitious Barriers and Processes</th>
<th>Important Assumptions and Conceptual Models</th>
<th>Relative Importance of Cementitious Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Rock Point Nuclear Power Plant</td>
<td>Decommissioned using a “Greenfield” approach under a license termination plan and demonstrating compliance with License Termination Rule supported by NEPA EA.</td>
<td>Considered for the dose assessment supporting certification of the cask used to transport the reactor pressure vessel to the Barnwell low-level disposal facility.</td>
<td>Shielding credit taken for the low density cellular concrete used to fill voids in the pressure vessel and the annular space between the reactor vessel and package.</td>
<td>Concrete in reactor vessel voids likely to have small shielding impact relative to the assumptions made for the source term in the analysis that allowed certification of cask.</td>
</tr>
</tbody>
</table>
cementitious barriers be designed to function physically over the short term to effectively contain short-lived radionuclides and be designed to function over longer times to limit the release rate for longer-lived radionuclides. In practice, the modeling has focused on both aspects.

Physical failure tends to be represented as a change in bulk hydraulic conductivity resulting from cracking. Prior to cracking, it is generally assumed that releases are controlled by diffusion, although different assumptions have been made for diffusion rates. Because cementitious waste forms can be considered a diffusion barrier to contaminant release, cracking is often critical as it alters the flow of water and vapor through the waste form (increasing the potential for leaching) and the diffusional properties. Because of the difficulties in quantifying the extent and impact of cracking, in cases where physical properties of cementitious barriers were considered, gross simplifying assumptions were often made, e.g., the cementitious barriers fail completely at the onset of through-wall cracking. A variety of different approaches were used to identify the onset of cracking. From the examples, it appears that there is still a lack of confidence regarding being able to take credit for more gradual changes as cracking progresses, but that lack of confidence does not appear to have a negative impact on the conclusions of the assessments.

From a chemical barrier perspective, the most common consideration has been the use of K_{ds} that account for the waste stabilization properties of cementitious materials. The examples provided many cases where the presence of reducing conditions in a grouted waste was an important consideration for the results of the assessment. More recently, solubilities are also being developed for specific radionuclides stabilized in cementitious matrices. There have been substantial successes in the use of these types of assumptions. This illustrates the apparent improved confidence related to taking credit for long term performance from a chemical perspective as opposed to the remaining concerns regarding taking credit for evolution of cracking over time.

Parameter uncertainties and temporal degradation and the resulting effects on properties for the cementitious materials are often not taken into account or over simplified although they can have significant impacts on predictions used to characterize doses and risks for decision-making purposes. Improvements in both the characterization and modeling of these phenomenological properties for cementitious materials used in disposal will provide more accurate predictions and support their continued use in future disposal and other nuclear-related activities in the USDOE. For example, one major reason that vitrification was selected for immobilization of low-activity wastes (LAW) at the Hanford Site was the relative durability and certainty of glass waste forms when compared to cementitious forms. Cementitious waste forms may have been adequate for Hanford LAW; however, the extensive work performed on vitrified waste forms for high-level waste (HLW) provided the assurance needed for stakeholders to rely on these waste forms for both Hanford HLW and LAW. One goal of the CBP is to provide more accurate models for cementitious materials used in nuclear application to ultimately provide this type of assurance for future applications of cementitious materials.

64 For example, Walton (1992) concluded that cracking is the “Achilles heel” of cementitious barrier performance. Furthermore, high quality concrete (without cracks) will typically perform acceptably well in the isolation of contaminants because of its “low permeability and high available surface area for sorption” (Walton 1992). When cracked, concrete cannot be relied upon for contaminant isolation.

65 SRS LAW is currently treated via grouting.
6.0 CONCLUSIONS AND MODELING/DATA NEEDS

Cementitious materials have been used in disposal applications regulated under various federal regulations including USDOE, IAEA and USNRC requirements related to waste disposal and CERCLA, RCRA, and NEPA, which are administered by the USEPA. Nuclear reactor and licensed material facilities have been decommissioned under the License Termination Rule (10 CFR Part 20 Subpart E). Unlike assessment processes regulated under the Atomic Energy Act (AEA) and USDOE 435.1, the risk and dose assessments performed under the laws administered by the USEPA and the LTR do not require performance assessments, but can include calculations similar to a performance assessment for more complex situations. Although, there can be different goals and frameworks for these different applications, there are many similarities and experiences that can be shared. There is a critical need to create a means to share information regarding the lessons learned and good practices associated with modeling of cementitious barriers for all of these different applications and to identify specific aspects that may be beneficial from one application to the next.

When considering PA-like assessments for applications outside of the radioactive waste disposal realm, cementitious barriers have traditionally not been considered or been considered in a simplified manner. Furthermore, there is typically minimal guidance related to treatment of cementitious barriers in any of the regulations and associated guidance. There are more guidance documents beginning to be developed, primarily by the USNRC. A significant area of need is to update existing guidance to account for the latest developments and to make that guidance useful across the spectrum of different types of assessments that are being conducted, recognizing the different goals and philosophies applied for those assessments.

With the variety of applications taking advantage of cementitious materials continually increasing, a larger population of modelers is getting involved in assessments. The lack of taking credit for cementitious barriers can often be the result of a lack of awareness of information regarding the properties and performance of these materials for the specific conditions under analysis. This highlights a need for improved sharing of information regarding models and data that are needed to assess the performance of cementitious barriers.

From a technical perspective, significant advances have been made in the consideration of the role of cementitious barriers as chemical barriers, although consideration of cracking in the context of physical properties remains a significant challenge. There remains a tendency to make gross simplifications in the context of performance of cementitious barriers as a physical barrier to flow and in many cases as a chemical barrier as well. Improving both the characterization of the properties of these materials and the accuracy of the models used to predict their performance, especially over long assessment periods, would increase the applicability of cementitious materials for nuclear applications.

7.0 REFERENCES

Overview of the U.S. Department of Energy and Nuclear Regulatory Commission Performance Assessment Approaches

Bradbury, MH & Sarott, F 1995, *Sorption Database for the Cementitious Near-Field of a L/ILW Repository for Performance Assessment*, PSI Bericht Nr. 95-06, Paul Scherrer Institute (ISSN 1019-0643), Switzerland.

EPRI 2004, Decommissioning License Termination Plan Documents and Lessons Learned: Summary of LTPs for Two Reactors and Nuclear Regulatory Commission Safety Evaluation Reports for Three Nuclear Power Plant LTPs, EPRI Licensed Material, Electric Power Research Institute, Palo Alto, CA.

INEL 1996, HWMA Closure Plan for the Waste Calcining Facility at the Idaho National Engineering Laboratory, INEL-96/0189, Idaho National Engineering Laboratory, Idaho Falls, ID.

Loomis, GG, Jessmore, JJ, Zdinak, AP & Ewanic, MA 1998a, Acid Pit Stabilization Project (Volume 2 - Hot Testing), INEEL/EXT-98-00009 (Volume 2), Rev. 0, Idaho National Engineering Laboratory, Idaho Falls, ID.

Loomis, GG, Zdinak, AP, Ewanic, MA & Jessmore, JJ 1998b, Acid Pit Stabilization Project (Volume 1 - Cold Testing), INEEL/EXT-98-00009 (Volume 1), Rev. 0, Idaho National Engineering Laboratory, Idaho Falls, ID.
Overview of the U.S. Department of Energy and Nuclear Regulatory Commission Performance Assessment Approaches

ORNL 1997, Performance Assessment for Continuing and Future Operations at Solid Waste Storage Area 6, Appendices, ORNL-6783/R1 Volume 2, Oak Ridge National Laboratory, Oak Ridge, TN.

Overview of the U.S. Department of Energy and Nuclear Regulatory Commission Performance Assessment Approaches

SRS 1997a, *Industrial Wastewater Closure Module for the High-Level Waste Tank 17 System*, Construction Permit Number 17,424-IW, Revision 2, Savannah River Site, Aiken, SC.

SRS 1997b, *Industrial Wastewater Closure Module for the High-Level Waste Tank 20 System*, Construction Permit Number 17,424-IW, Revision 1, Savannah River Site, Aiken, SC.

Superfund Implementation, 1987, Executive Order 12580, Washington, DC.

Overview of the U.S. Department of Energy and Nuclear Regulatory Commission Performance Assessment Approaches

Overview of the U.S. Department of Energy and Nuclear Regulatory Commission Performance Assessment Approaches

USDOE-ID 2007, Action Memorandum for Decommissioning the Engineering Test Reactor Complex under the Idaho Cleanup Project, DOE/ID-11303, Revision 0, Idaho Cleanup Project, Idaho Falls, ID.

USDOE-ID 2008, Record of Decision for Radioactive Waste Management Complex Operable Unit 7-13/14, DOE/ID-11359 Rev. 0, Idaho National Engineering and Environmental Laboratory, Idaho Falls, ID.

Overview of the U.S. Department of Energy and Nuclear Regulatory Commission Performance Assessment Approaches

Overview of the U.S. Department of Energy and Nuclear Regulatory Commission Performance Assessment Approaches

USNRC 2006a, Criticality Control of Fuel Within Dry Storage Casks or Transportation Packages in a Spent Fuel Pool, Federal Register: November 16, 2006 (Volume 71, Number 221), 66648-66657, U.S. Nuclear Regulatory Commission, Washington, DC.

Overview of the U.S. Department of Energy and Nuclear Regulatory Commission Performance Assessment Approaches
