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FOREWORD

The Cementitious Barriers Partnership (CBP) Project 
is a multi-disciplinary, multi-institutional  collabora-
tion supported by the United States Department of 
Energy (US DOE) Offi ce of Waste Processing. The 
objective of the CBP project is to develop a set of 
tools to improve understanding and prediction of the 
long-term structural, hydraulic, and chemical per-
formance of cementitious barriers used in nuclear 
applications. 

A multi-disciplinary partnership of federal, academic, 
private sector, and international expertise has been 
formed to accomplish the project objective. In addi-
tion to the US DOE, the CBP partners are the United 
States Nuclear Regulatory Commission (NRC), 
the National Institute of Standards and Technology 
(NIST), the Savannah River National Laboratory 
(SRNL), Vanderbilt University (VU) / Consortium 
for Risk Evaluation with Stakeholder Participation 
(CRESP), Energy Research Center of the Netherlands 
(ECN), and SIMCO Technologies, Inc.

The periods of cementitious performance being evalu-
ated are >100 years for operating facilities and > 1000 
years for waste management. The set of simulation 
tools and data developed under this project will be 
used to evaluate and predict the behavior of cementi-
tious barriers used in near-surface engineered waste 
disposal systems, e.g., waste forms, containment 
structures, entombments, and environmental remedia-
tion, including decontamination and decommission-
ing (D&D) activities. The simulation tools also will 

support analysis of structural concrete components 
of nuclear facilities (spent-fuel pools, dry spent-
fuel storage units, and recycling facilities such as 
fuel fabrication, separations processes). Simulation 
parameters will be obtained from prior literature and 
will be experimentally measured under this project, as 
necessary, to demonstrate application of the simula-
tion tools for three prototype applications (waste form 
in concrete vault, high-level waste tank grouting, and 
spent-fuel pool). Test methods and data needs to sup-
port use of the simulation tools for future applications 
will be defi ned. 

The CBP project is a fi ve-year effort focused on 
reducing the uncertainties of current methodologies 
for assessing cementitious barrier performance and 
increasing the consistency and transparency of the 
assessment process. The results of this project will 
enable improved risk-informed, performance-based 
decision-making and support several of the strate-
gic initiatives in the DOE Offi ce of Environmental 
Management Engineering & Technology Roadmap. 
Those strategic initiatives include 1) enhanced tank 
closure processes; 2) enhanced stabilization technolo-
gies; 3) advanced predictive capabilities; 4) enhanced 
remediation methods; 5) adapted technologies for 
site-specifi c and complex-wide D&D applications; 
6) improved SNF storage, stabilization and disposal 
preparation; 7) enhanced storage, monitoring and 
stabilization systems; and 8) enhanced long-term 
performance evaluation and monitoring.

Christine A. Langton, PhD. 
Savannah River National Laboratory

David S. Kosson, PhD.
Vanderbilt University/CRESP
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Sankaran Mahadevan
Sohini Sarkar

Vanderbilt University, School of Engineering 
Consortium for Risk Evaluation with Stakeholders Participation, III

Nashville, TN 37235

ABSTRACT

This report surveys available analysis techniques to quantify the uncertainty in performance assessment (PA) 
arising from various sources. Three sources of uncertainty – physical variability, data uncertainty, and model 
error – are considered. The uncertainty quantifi cation methods are described in the context of four types of 
analyses needed, namely, (1) quantifi cation of uncertainty in the inputs to the PA models, (2) propagation of 
input uncertainty through the PA models, (3) model error quantifi ed through verifi cation and validation activi-
ties, and (4) probabilistic PA. Random variable and random process descriptions of physical variability are 
outlined. Methods for handling data uncertainty through fl exible families of probability distributions, confi -
dence bounds, interval analysis and Bayesian analysis are described. Useful surrogate modeling and sensitivity 
analysis techniques for effi cient uncertainty propagation analysis are discussed, as well as methods to quantify 
the various sources of model error. Statistical hypothesis testing techniques (both classical and Bayesian) are 
discussed for the validation of PA models, and a Bayesian approach to quantify the confi dence in model predic-
tion with respect to fi eld conditions is developed. First-order approximations as well as effi cient Monte Carlo 
sampling techniques for probabilistic PA are described.

1.0  INTRODUCTION 

Uncertainty quantifi cation is important in assessing 
and predicting performance of complex engineering 
systems, especially in the absence of adequate ex-
perimental or real-world data. Simulation of complex 
physical systems involves multiple levels of modeling 
ranging from the material to component to subsystem 
to system. Interacting models and simulation codes 
from multiple disciplines (multiple physics) may be 
required, with iterative analyses between some of the 
codes. As the models are integrated across multiple 
disciplines and levels, the problem becomes more 
complex and assessing the predictive capability of the 
overall system model becomes more diffi cult. Many 
factors contribute to the uncertainty in the prediction 
of the system model including: variability in model 

input variables, modeling errors, assumptions and 
approximations, measurement errors, and sparse and 
imprecise data.

The overall goal of this report is to discuss pos-
sible methods and tools for quantifying uncertainty. 
Sources of uncertainty are listed below:

Physical variability • 
Data uncertainty• 
Model error• 

Physical variability: This type of uncertainty, also 
referred to as aleatory or irreducible uncertainty, 
arises from natural or inherent random variability of 
physical processes and variables, due to many factors 
such as environmental and operational variations, 
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construction processes, and quality control. This type 
of uncertainty is present both in system properties 
(e.g., material strength, porosity, diffusivity, geometry 
variations, reaction rates) and external infl uences and 
demands on the system (e.g., concentration of chemi-
cals, temperature, humidity, mechanical loads). As a 
result, in model-based prediction of system behav-
ior, there is uncertainty regarding the precise values 
for model parameters and model inputs, leading to 
uncertainty about the precise values of the model 
output. Such quantities are represented in engineering 
analysis as random variables, with statistical param-
eters such as mean values, standard deviations, and 
distribution types estimated from observed data or in 
some cases assumed. Variations over space or time 
are modeled as random processes.

Data uncertainty: This type of uncertainty falls 
under the category of epistemic uncertainty (i.e., 
knowledge or information uncertainty) or reducible 
uncertainty (i.e., the uncertainty is reduced as more 
information is obtained). Data uncertainty occurs 
in different forms. In the case of a quantity treated 
as a random variable, the accuracy of the statistical 
distribution parameters depends on the amount of 
data available. If the data is sparse, the distribution 
parameters themselves are uncertain and may need 
to be treated as random variables. On the other hand, 
information may be imprecise or qualitative, and it 
is not easy to treat this type of uncertainty through 
random variables. In some cases, data regarding 
some variables may only be available as a range of 
values, based on expert opinion. Non-probabilistic 
representations such as fuzzy sets and evidence 
theory are available for describing such uncertainties. 
Measurement error (either in the laboratory or in the 
fi eld) is another important source of data uncertainty. 

Model error: This results from approximate math-
ematical models of the system behavior and from 
numerical approximations during the computational 
process, resulting in two types of error in general – 
solution approximation error, and model form error. 

The performance assessment (PA) of a complex 
system involves the use of numerous analysis models, 
each with its own assumptions and approximations. 
The errors from the various analysis components 
combine in a complicated manner to produce the 
overall model error. This is also referred to as model 
bias.

The roles of several types of uncertainty in the use of 
model-based simulation for performance assessment 
can be easily illustrated with the following example. 
Consider the probability of an undesirable event de-
noted by g(X) < k, which can be computed from

kg

dfkgP
)(

  )())((
X

X xxX (1)

where:

X is the vector of input random variables, fX(x) is the 
joint probability density function of X, g(X) is the model 
output, and k is the regulatory requirement in performance 
assessment. 

Every term on the right hand side of Equation (1) has 
uncertainty. There is inherent variability represented 
by the vector of random variables X, data uncertainty 
(due to inadequate data) regarding the distribution 
type and distribution parameters of fX(x), and model 
errors in the computation of g(X). Thus it is neces-
sary to systematically identify the various sources of 
uncertainty and develop the framework for including 
them in the overall PA uncertainty quantifi cation. 

The uncertainty analysis methods covered in this 
report are grouped along four major steps of analysis 
that are needed for probabilistic PA:

Input uncertainty quantifi cation• 
Uncertainty propagation analysis• 
Model uncertainty quantifi cation (calibration, veri-• 
fi cation, validation, and extrapolation)
Probabilistic performance assessment• 
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A brief summary of the analysis methods covered in 
the four steps is provided below:

Input uncertainty quantifi cation: Physical variabil-
ity of parameters can be quantifi ed through random 
variables by statistical analysis. Parameters that vary 
in time or space are modeled as random processes 
or random fi elds with appropriate correlation struc-
ture. Data uncertainty that leads to uncertainty in the 
distribution parameters and distribution types can be 
addressed using confi dence intervals and Bayesian 
statistics. Methods to include several sources of data 
uncertainty, namely, sparse data, interval data and 
measurement error, are discussed.

Uncertainty propagation analysis: Both classical 
and Bayesian probabilistic approaches can be inves-
tigated to propagate uncertainty between individual 
sub-models and through the overall system model. To 
reduce the computational expense, surrogate models 
can be constructed using several different techniques. 
Methods for sensitivity analysis in the presence of 
uncertainty are discussed. 

Model uncertainty quantifi cation (calibration, ver-
ifi cation, validation, and extrapolation): Model cal-
ibration is the process of adjusting model parameters 
to obtain good agreement between model predictions 
and experimental observations (McFarland, 2008). 
Both classical and Bayesian statistical methods are 
discussed for model calibration with available data. 
One particular concern is how to properly integrate 
different types of data, available at different levels of 
the model hierarchy. Assessment of the “correct” im-
plementation of the model is called verifi cation, and 
assessment of the degree of agreement of the model 
response with the available physical observation is 
called validation (McFarland, 2008). Model verifi ca-
tion and validation activities help to quantify model 
error (both model form error and solution approxima-
tion error). A possible Bayesian approach is discussed 
for quantifying the confi dence in model extrapolation 
from laboratory conditions to fi eld conditions.

Probabilistic performance assessment: Limit-state-
based reliability analysis methods are discussed to 
help quantify the PA results in a probabilistic manner. 
Methods are also discussed to compute the confi dence 
bounds in probabilistic PA results. Monte Carlo simu-
lation with high-fi delity analyses modules is compu-
tationally expensive; hence surrogate (or abstracted) 
models are frequently used with Monte Carlo simula-
tion. In that case, the uncertainty or error introduced 
by the surrogate model also needs to be quantifi ed. 

Figure 1 shows the four stages, within a conceptual 
framework for systematic quantifi cation, propagation 
and management of various types of uncertainty. The 
methods discussed in this report address all the four 
steps shown in Figure 1. While uncertainty has been 
dealt with using probabilistic as well as non proba-
bilistic (e.g., fuzzy sets, possibility theory, evidence 
theory) formats in the literature, this report will focus 
only on probabilistic analysis, mainly because the 
mathematics of probabilistic computation are very 
well established, whereas the non-probabilistic meth-
ods are still under development and generally result 
in interval computations that are expensive when ap-
plied to large problems with many variables.

The different stages of analysis in Figure 1 are not 
strictly sequential. For example, stage 3 (verifi ca-
tion and validation – commonly denoted as V&V) 
appears after system analysis and uncertainty propa-
gation. However, it is almost impossible to perform 
V&V on the system scale, because of extrapolation 
in time and space; therefore V&V is usually done 
for the sub-models. Also, several of the inputs to the 
overall system model may be calibrated based on the 
results of sub-model analysis, sensitivity analysis, 
and V&V activities. Thus the four stages in Figure 1 
simply group together the different types of analysis, 
and might occur in different sequences for different 
problems and different sub-models.

ul
a

t 
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Uncertainty analysis methods currently used in PA ac-
tivities are discussed in another Cementitious Barriers 
Partnership report. The quantifi cation of uncertainty 
in current PAs is limited to quantifying the probability 
distributions of key parameters. A more comprehen-
sive implementation of uncertainty quantifi cation for 
environmental PAs has been hampered by the numer-
ous sources of uncertainty and the long time durations 
considered in the PAs. The methods presented in this 
report provide a basis for advancing the current state 
of the art in uncertainty quantifi cation of environmen-
tal PAs. 

The remainder of this report is organized as follows: 
Section 2 discusses methods to quantify the uncer-
tainty in the inputs to the system analysis model, 
addressing both physical variability and data uncer-
tainty. Model error is addressed in Sections 3 and 4. 

2.0 INPUT UNCERTAINTY 

QUANTIFICATION

2.1  Physical Variability 

Examples of cementitious barrier model input vari-
ables with physical variability (i.e., inherent, natural 
variability) include:

Material properties (e.g., mechanical, thermal, • 
porosity, permeability, diffusivity)
Geometrical properties (e.g., structural dimensions, • 
concrete cover depth)
External conditions (e.g., mechanical loading, • 
boundary conditions, physical processes such as 
freeze-thaw, chemical processes such as carbona-
tion, chloride or sulfate attack)

__________________________

1 The box Data in the input uncertainty quantifi cation stage includes laboratory data, historical fi eld data, literature sources, and 
expert opinion.

2 The box Design Changes may refer to conceptual, preliminary, or detailed design, depending on the development stage.
3 The boxes Design Changes and Risk Management are outside the scope of this report, although they are part of the overall 

uncertainty framework.

Figure 1. Uncertainty Quantifi cation, Propagation and Management Framework
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Many uncertainty quantifi cation studies have only 
focused on quantifying and propagating the inherent 
variability in the input parameters. Well-established 
statistical (both classical and Bayesian) methods are 
available for this purpose. 

2.1.1   Modeling Variability in System
Properties

In probabilistic analysis, the sample–to–sample 
variations (random variables) in the parameters are 
addressed by defi ning them as random variables with 
probability density functions (PDFs). This assumes 
that the system/material is homogeneous on a mac-
roscale. For example, chloride ion diffusivity has 
been modeled using a lognormal distribution (Hong, 
2000; Gulikers, 2006; Rafi q et al., 2004; Chen, 2006) 
and water–cement ratio has been modeled using a 
normal distribution (Chen, 2006) and uniform and 
triangular distributions (Kong et al., 2002). 

Some parameters may vary not only from sample to 
sample (as is the case for random variables), but also 
in spatial or time domain. Parameter variation over 
time and space can be modeled as random processes 
or random fi elds. For example, concrete cover depth 
and compressive strength have been modeled as 
random fi elds using squared exponential correlation 
functions (Stewart and Mullard, 2007). 

Some well known methods for simulating random 
processes are spectral representation (SR) (Gurley, 
1997), Karhunen-Loeve expansion (KLE) (Ghanem 
and Spanos, 2003, Huang et al., 2007; Mathelin et 
al., 2005), and polynomial chaos expansion (PCE) 
(Huang et al., 2007; Mathelin et al., 2005; Red-Horse 
and Benjamin, 2004). The PCE method has been used 
to represent the stochastic model output as a function 
of stochastic inputs. 

Consider an example of representing a random pro-
cess using KLE, expressed as

1
( ) ( ) ( ) ( )i i i

i
x x f x (2)

where:

(x) is the mean of the random process (x, χ), λi and 
( )if x  are eigenvalues and eigenfunctions of C(x1,x2), and 

ξi(χ) is a set of uncorrelated standard normal random 
variables (x is a space or time coordinate, and χ is an index 
representing different realizations of the random process). 

Using Equation (2), realizations of the random 
process (x,χ) can be easily simulated by generating 
samples of the random variables ξ(χ), and these 
realizations of (x,χ) can be used as inputs to PA.

2.1.2  Modeling Variability in External
Conditions

Some boundary conditions (e.g., temperature and 
moisture content) might exhibit a recurring pattern 
over shorter periods and also a trend over longer 
periods. An example of variability in an external 
condition, i.e., rainfall, is illustrated in Figure 2. It 
is evident from the fi gure that the rainfall data has a 
pattern over a period of 1 year and a downward trend 
over a number of years. These can be numerically 
represented by a seasonal model using an autoregres-
sive integrated moving average (ARIMA) method 
generally used for linear1 nonstationary2 processes 
(Box et al., 1994). This method can be used to predict 
the temperature or the rainfall magnitudes in the fu-
ture so that it can be used in the durability analysis of 
the structures under future environmental conditions.

__________________________

1 The current observation can be expressed as a linear function of past observations.
2 A process is said to be non-stationary if its probability structure varies with the time or space coordinate.
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2.1.3 Stationary External Processes

For a stationary process3, the ARIMA method ex-
presses the observation at the tht  time step in terms of 
the observations at previous time steps as

(3)
p

i
titit zcz

1

where:

zt and zt-i are observations at the tht  and thit )( −  time 
steps, c is a constant, pis are coeffi cients and εt is the error 
between the observed and the predicted values at tht  time 
step. 

Assuming that the error at tht  time step is also depen-
dent on the errors at previous time steps, εt  can also 
be expressed as

where:

c1 is a constant and θi's are coeffi cients. 

Using a backward operator B such that Bizt = zt-i  and 
combining Eqs. (3) and (4), results in Equation 5.

(5)
tqtp BzB )()(

 where:

 pp (B) and θq(B) are polynomials of pth and qth order. The 
coeffi cients of the polynomials can be determined using the 
least-squares method.

2.1.4  Non-Stationary External  Processes

A random non-stationary process fl uctuates about 
a mean value that exhibits a specifi c pattern. If the 
differences in levels of fl uctuation are considered, the 
process can be simulated using the same method as 
for stationary processes. For example, differentiat-
ing a second order polynomial twice will result in a 
constant. Thus, a non-stationary process of dth degree 
can be expressed as

(6)tqt
d

p BzB )()(

Figure 2. Precipitation Data for Aiken, SC (National Oceanic and Atmospheric Administration)

(4)
q

i
itit c

1
1

__________________________

3 A process is said to be stationary if its probability structure does not vary with the time or space coordinate.
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where:

∇ is called the backward difference operator of the dth 
degree.

If the process exhibits patterns over a shorter period 
(s) and a trend over a longer period, the process can 
be expressed as 

(7)t
s

Qt
D
s

s
P BzB )()(

where:

ΦP(Bs)  and ΦQ(B
s)  are polynomials of order P and Q, Bszt 

= zt-s,  and D is the order of differentiation. 

A similar model may be used to relate the current er-
ror (error between observation and model prediction 
at tth time step) to the previous errors (errors between 
observations and model predictions at previous time 
steps) as 

tqt
d

p aBB )()( (8)

where:

φp(B) and θq(B) and are polynomials of order p and q, d is 
the order of differentiation and ta  is a white noise process. 

The fi nal model is obtained by combining Eqs. (7) 
and (8) as

(9)
t

s
Qqt

D
s

ds
Pp aBBzBB )()()()(

Eq. (9) is referred to as a general multiplicative model 
of order ( ) ( )sp d q P D Q× × × × × . This method 
can be used to simulate a seasonal process.

It may also be important to quantify the statistical cor-
relations between some of the input random variables. 
Many previous studies on uncertainty quantifi cation 
simply assume either zero or full correlation, in the 
absence of adequate data. A Bayesian approach may 

be pursued for this purpose, as described in subsec-
tion 2.2. 

2.2 Data Uncertainty 

A Bayesian updating approach is described below to 
quantify uncertainty due to inadequate statistical data 
and measurement errors (εexp). This is consistent with 
the framework proposed in Figure 1, and is used to 
update the statistics of different physical variables 
and their distribution parameters. The prior distribu-
tions are based on available data and expert judgment, 
and these are updated as more data becomes avail-
able through experiments, analysis, or real-world 
experience.

2.2.1 Sparse Statistical Data

For any random variable that is quantitatively de-
scribed by a probability density function, there is 
always uncertainty in the corresponding distribution 
parameters due to small sample size. As testing and 
data collection activities are performed, the state of 
knowledge regarding the uncertainty changes, and a 
Bayesian updating approach can be implemented. For 
example, suppose we decide that an input variable X 
follows a Gaussian distribution N(μ,σ2) with μ and σ 
estimated from the data. 

There is uncertainty in the normal distribution as-
sumption, as well as in the estimates of the distribu-
tion parameters μ and σ, depending on the sample 
size. In the Bayesian approach, μ and σ are also 
treated as random variables, and their statistics are 
updated based on new data. However, we do not 
know the distribution of μ and σ  a priori, so we may 
assume Gaussian for μ and Gamma distribution for 
p = σ-2  as an initial guess for example, and then do a 

Bayesian update after more data is collected. 

The Bayesian approach also applies to joint distribu-
tions of multiple random variables, which also helps 
to include the uncertainty in correlations between the 
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variables. A prior joint distribution is assumed (or 
individual distributions and correlations are assumed), 
and then updated as data becomes available.

Instead of assuming a well known prior distribution 
form (e.g., uniform, normal) for sparse data sets, 
either empirical distribution functions, or fl exible 
families of distributions based on the data can be 
constructed.  A bootstrapping4 technique can then be 
used to quantify the uncertainty in the distribution 
parameters. The empirical distribution function is 
constructed by ranking the observations from lowest 
to highest value, and assigning a probability value to 
each observation. 

Examples of fl exible distribution families include 
the: Johnson family, Pearson family, gamma distribu-
tion, and stretched exponential distribution. The use 
of the Johnson family distribution has been explored 
by Marhadi et al., 2008, and extended to quantify the 
uncertainty in distribution parameters by McDonald 
et al., 2009. In constructing the Johnson family 
distribution, the available data is used to calculate the 
fi rst four moments, and then the distribution form is 
chosen based on the values of the four moments. A 
jack-knife procedure is used to estimate the uncertain-
ty in the distribution parameters, based on repeated 
estimation by leaving out one or more data points in 
each estimation. 

2.2.2  Measurement Error

The measured quantity yexp usually deviates from the 
unknown true value ytrue due to the uncertainties in 
the test setup, equipment, environment, and opera-
tor. For example, large errors in the measurement 
of expansion due to sulfate attack can be seen in the 
experiments performed by Ferraris et al., 1997. The 
measurement error εexp can be expressed as yexp =  ytrue 

+ εexp. The measurement error in each input variable 

in many studies (e.g., Barford, 1985) is assumed 
to be independent and identically distributed (IID) 
with zero mean and an assumed variance, i.e., εexp (  
N(0,σ2

exp). Due to the measurement uncertainty, the 
distribution parameter σexp cannot be obtained as a 
deterministic value. Instead, it is a random variable 
with a prior density τ (σexp). Thus, when new data is 
available after testing, the distribution of σexp can be 
easily updated using the Bayes theorem. 

Another way to represent measurement error εexp is 
through an interval only, and not as a random vari-
able. In that case, one can only say the true value 
ytrue lies in the interval [yexp - εexp, yexp +  εexp ] without 
any probability distribution assigned to εexp. Methods 
to include data in interval format are discussed next.

2.2.3  Data Available in Interval 
Format

Some quantities in the system model may not have 
probabilistic representation, since data may be sparse 
or may be based on expert opinion. Some experts 
might only provide information about a range of 
possible values for some model input variable. 
Representations such as fuzzy sets, possibility theory, 
and evidence theory have been used. This report is 
focused on probabilistic methods to include interval 
data.

Transformations have been proposed from a non-
probabilistic to probabilistic format, through the 
maximum likelihood approach (Langley, 2000; Ross 
et al., 2002). Such transformations have attracted the 
criticism that information is either added or lost in the 
process. Two ways to address the criticism are: (1) 
construct empirical distribution functions based on in-
terval data collected from multiple experts or experi-
ments (Ferson et al., 2007); or (2) construct fl exible 
families of distributions with bounds on distribution 

__________________________

4  Bootstrapping is a data-based simulation method for statistical inference by re-sampling from an existing data set 
(Efron et al., 1994).
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parameters based on the interval data, without forcing 
a distribution assumption (McDonald et al., 2008). 
These can then be treated as random variables with 
probability distribution functions and combined with 
other random variables in a Bayesian framework to 
quantify the overall system model uncertainty. The 
use of families of distributions will result in multiple 
probability distributions for the output, representing 
the contributions of both physical variability and data 
uncertainty.

3.0  PROPAGATION UNCERTAINTY

 METHODS

In this section, methods to quantify the contributions 
of different sources of uncertainty and error as they 
propagate through the system analysis model, includ-
ing the contribution of model error, are discussed, in 
order to quantify the overall uncertainty in the system 
model output. 

This section will cover two issues: (1) quantifi cation 
of model output uncertainty, given input uncertainty 
(both physical variability and data uncertainty), and 
(2) quantifi cation of model error (due to both model 
form selection and solution approximations). 

Several uncertainty analysis studies, including a study 
with respect to the Yucca Mountain high-level waste 
repository, have recognized the distinction between 
physical variability and data uncertainty (Helton and 
Sallaberry, 2009a & 2009b). As a result, these meth-
ods evaluate the variability in an inner loop calcula-
tion and data uncertainty in an outer loop calculation. 
Another example is provided by Holdren et al., 2006 
in a baseline risk assessment study with respect to the 
Idaho Cleanup Project, where contributions of dif-
ferent sources of uncertainty are separately analyzed, 
such as from inventory, infi ltration, sorption charac-
teristics, model calibration, and simulation periods. 

3.1 Propagation of Physical Variability

Various probabilistic methods (e.g., Monte Carlo 
simulation and fi rst-order or second-order analytical 
approximations) have been studied for the propaga-
tion of physical variability in model inputs and model 
parameters, expressed through random variables and 
random process or fi elds.  Stochastic fi nite element 
methods (e.g., Ghanem and Spanos, 2003; Haldar and 
Mahadevan, 2000) have been developed for single 
discipline problems in structural, thermal, and fl uid 
mechanics. An example of such propagation is shown 
in Figure 3. Several types of combinations of system 
analysis model and statistical analysis techniques are 
available: 

Monte Carlo simulation with the deterministic • 
system analysis as a black-box (e.g., Robert and 
Cesalla, 2004) to estimate model output statistics 
or probability of regulatory compliance;
Monte Carlo simulation with a surrogate model to • 
replace the deterministic system analysis model 
(e.g., Ghanem and Spanos, 2003; Isukapalli et al., 
1998; Xiu and Karniadakis, 2003; Huang et al., 
2007), to estimate model output statistics or prob-
ability of regulatory compliance;
Local sensitivity analysis using fi nite difference, • 
perturbation or adjoint analyses, leading to esti-
mates of the fi rst-order or second-order moments 
of the output (e.g., Blischke and Murthy, 2000); 
and
Global sensitivity and effects analysis, and analysis • 
of variance in the output (e.g., Box et al., 1978).

These techniques are generic, and can be applied to 
multi-physics analysis with multiple component mod-
ules as in the PA of cementitious barriers. However, 
most applications of these techniques have only con-
sidered physical variability. The techniques need to 
include the contribution of data uncertainty and model 
error to the overall model prediction uncertainty. 
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Computational effort is a signifi cant issue in practical 
applications, since these techniques involve a number 
of repeated runs of the system analysis model. The 
system analysis may be replaced with an inexpensive 
surrogate model in order to achieve computational 
effi ciency; this is discussed in Section 3.2. Effi cient 
Monte Carlo techniques have also been pursued to 
reduce the number of system model runs, includ-
ing Latin hypercube sampling (LHS) (Mckay et al., 
1979; Farrar et al., 2003) and importance sampling 
(Mahadevan and Raghothamachar, 2000; Zou et al. 
2003). 

3.2 Propagation of Data Uncertainty

Three types of data uncertainty were discussed in 
Section 2. Sparse point data results in uncertainty 
about the parameters of the probability distributions 
describing quantities with physical variability. In 
that case, uncertainty propagation analysis takes a 
nested implementation. In the outer loop, samples of 
the distribution parameters are randomly generated, 
and for each set of sampled distribution parameter 
values, probabilistic propagation analysis is carried 
out as in Section 3.1. This results in the computation 

of multiple probability distributions of the output, or 
confi dence intervals for the estimates of probability of 
non-compliance in PA. 

In the case of measurement error, choice of the un-
certainty propagation technique depends on how the 
measurement error is represented. If the measurement 
error is represented as a random variable, it is simply 
added to the measured quantity, which is also a ran-
dom variable due to physical variability. Thus a sum 
of two random variables may be used to include both 
physical variability and measurement error in a quan-
tity of interest. If the measurement error is represent-
ed as an interval, one way to implement probabilistic 
analysis is to represent the interval through families 
of distributions or upper and lower bounds on prob-
ability distributions, as discussed in Section 2.2.3. In 
that case, multiple probabilistic analyses, using the 
same nested approach as in the case of sparse data, 
can be employed to generate multiple output distribu-
tions or confi dence intervals for the model output. 
The same approach is possible for interval variables 
that are only available as a range of values, as in the 
case of expert opinion.

 
Finite Element Analysis Probabilistic Input Probabilistic Output

Random process: 
K(xi) = Boundary conditions 
F(xi) = Mechanical vibration  

Random field: 
E(xi) = Material properties 
H(xi) = Thermal loads 
G(xi) = Geometric properties 

- Thermal protection panel subjected to 
dynamic loads 

- Stochastic finite element analysis 
- Account for spatial and temporal 

variability of system properties and 
loads 

- Account for material degradation 

= Stress 
= Strain 

ix

ix
= Displacementix

Figure 3. Example of Physical Variability Propagation
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Propagation of uncertainty is conceptually very 
simple, but computationally quite expensive to imple-
ment, especially when both physical variability and 
data uncertainty are to be considered. The presence of 
both types of uncertainty requires a nested implemen-
tation of uncertainty propagation analysis (simulation 
of data uncertainty in the outer loop and simulation of 
physical variability in the inner loop). If the system 
model runs are time-consuming, then uncertainty 
propagation analysis could be prohibitively expen-
sive. One way to overcome the computational hurdle 
is to use an inexpensive surrogate model to replace 
the detailed system model, as discussed next.

3.3  Surrogate Models

Surrogate models (also known as response surface 
models) are frequently used to replace the expensive 
system model, and used for multiple simulations to 
quantify the uncertainty in the output. Many types 
of surrogate modeling methods are available, such 
as linear and nonlinear regression, polynomial chaos 
expansion, Gaussian process modeling (e.g., Kriging 
model), splines, moving least squares, support vector 
regression, relevance vector regression, neural nets, 
or even simple look-up tables. For example, Goktepe 
et al., 2006 used neural network and polynomial 
regression models to simulate expansion of concrete 
specimens under sulfate attack. All surrogate models 
require training or fi tting data, collected by running 
the full-scale system model repeatedly for differ-
ent sets of input variable values. Selecting the sets 
of input values is referred to as statistical design 
of experiments, and there is extensive literature 
on this subject. Two types of surrogate modeling 
methods are discussed below that might achieve 
computational effi ciency while maintaining high 
accuracy in output-uncertainty quantifi cation. The 
fi rst method expresses the model output in terms 
of a series expansion of special polynomials such 
as Hermite polynomials, and is referred to as a 
stochastic response surface method (SRSM). The 
second method expresses the model output through 

a Gaussian process, and is referred to as Gaussian 
process modeling.

3.3.1  Stochastic Response Surface Method

The common approach for building a surrogate or 
response surface model is to use least squares fi t-
ting based on polynomials or other mathematical 
forms based on physical considerations. In SRSM, 
the response surface is constructed by approximat-
ing both the input and output random variables and 
fi elds through series expansions of standard ran-
dom variables (e.g. Isukapalli et al., 1998; Xiu and 
Karniadakis, 2003; Huang et al., 2007). This approach 
has been shown to be effi cient, stable, and convergent 
in several structural, thermal, and fl uid fl ow problems. 
A general procedure for SRSM is as follows:

Representation of random inputs (either ran-• 
dom variables or random processes) in terms of 
Standard Random Variables (SRVs) by K-L ex-
pansion, as in Equation (2).

Expression of model outputs in chaos series ex-• 
pansion. Once the inputs are expressed as func-
tions of the selected SRVs, the output quantities 
can also be represented as functions of the same 
set of SRVs.  If the SRVs are Gaussian, the output 
can be expressed a Hermite polynomial chaos 
series expansion in terms of Gaussian variables. 
If the SRVs are non-Gaussian, the output can be 
expressed by a general Askey chaos expansion 
in terms of non-Gaussian variables (Ghanem and 
Spanos, 2003).  

Estimation of the unknown coeffi cients in the • 
series expansion. The improved probabilistic col-
location method (Isukapalli et al., 1998) is used 
to minimize the residual in the random dimension 
by requiring the residual at the collocation points 
equal to zero. The model outputs are computed 
at a set of collocation points and used to estimate 
the coeffi cients.  These collocation points are the 
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roots of the Hermite polynomial of a higher order. 
This way of selecting collocation points would 
capture points from regions of high probability 
(Tatang et al., 1997). 

Calculation of the statistics of the output that has • 
been cast as a response surface in terms of a chaos 
expansion. The statistics of the response can be 
estimated with the response surface using either 
Monte Carlo simulation or analytical approxima-
tion.

3.3.2   Kriging or Gaussian Process Models

Gaussian process (GP) models have several features 
that make them attractive for use as surrogate mod-
els. The primary feature of interest is the ability of 
the model to “account for its own uncertainty.” That 
is, each prediction obtained from a Gaussian process 
model also has an associated variance, or uncertainty. 
This prediction variance primarily depends on the 
closeness of the prediction location to the training 
data, but it is also related to the functional form of the 
response. For example, see Fig. 4, which depicts a 

one-dimensional Gaussian process model. Note how 
the uncertainty bounds are related to both the close-
ness to the training points, as well as the shape of the 
curve. 

The basic idea of the GP model is that the output 
quantities are modeled as a group of multivariate 
normal random variables. A parametric covariance 
function is then constructed as a function of the 
inputs. The covariance function is based on the idea 
that when the inputs are close together, the correla-
tion between the outputs will be high. As a result, the 
uncertainty associated with the model prediction is 
small for input values that are close to the training 
points, and large for input values that are not close to 
the training points. In addition, the GP model may in-
corporate a systematic trend function, such as a linear 
or quadratic regression of the inputs (in the notation 
of Gaussian process models, this is called the mean 
function, while in Kriging it is often called a trend 
function). The effect of the mean function on predic-
tions that interpolate the training data is small, but 
when the model is used for extrapolation, the predic-
tions will follow the mean function very closely.

interpolation 

95% confidence intervals 

observations 

Figure 4. Gaussian Process Model With Uncertainty Bounds
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Within the GP modeling technique, it is also pos-
sible to adaptively select the design of experiments to 
achieve very high accuracy. The method begins with 
an initial GP model built from a very small number 
of samples, and then one intelligently chooses where 
to generate subsequent samples to ensure the model 
is accurate in the vicinity of the region of interest. 
Since the GP model provides the expected value and 
variance of the output quantity, the next sample may 
be chosen in the region of highest variance, if the 
objective is to minimize the prediction variance. The 
method has been shown to be both accurate and com-
putationally effi cient for arbitrarily shaped functions 
(Bichon et al., 2007).

3.4 Sensitivity Analysis Methods

Sensitivity analysis serves several important func-
tions: (1) identifi cation of dominant variables or 
sub-models, thus helping to focus data collection 
resources effi ciently; (2) identifi cation of insignifi -
cant variables or sub-models of limited signifi cance, 
helping to reduce the size of the problem and compu-
tational effort; and (3) quantifi cation of the contribu-
tion of solution approximation error.  Both local and 
global sensitivity analysis techniques are available 
to investigate the quantitative effect of different 
sources of variation (physical parameters, models, 
and measured data) on the variation of the model 
output. The primary benefi t of sensitivity analysis to 
uncertainty analysis is to enable the identifi cation of 
which physical parameters have the greatest infl uence 
on the output (Campolongo et al., 2000; Saltelli et al., 
2000). An analysis of the impact of the parametric 
uncertainty is conducted to weed out those that have 
an insignifi cant effect upon the system output. For ex-
ample, Chen (2006) performed sensitivity analysis to 
identify the important parameters affecting the service 
life of the concrete structures. 

Three sensitivity analysis methods are factor screen-
ing, local-, and global-sensitivity analysis approaches. 
Factor screening determines which parameters have 
the greatest impact on the system output variability, 

by evaluating the output at the extreme values 
within the ranges of the parameters. Local sensitiv-
ity analysis utilizes fi rst-order derivatives of system 
output quantities with respect to the parameters. It 
is usually performed for a nominal set of parameter 
values. Global sensitivity analysis typically uses sta-
tistical sampling methods, such as Latin Hypercube 
Sampling, to determine the total uncertainty in the 
system output and to apportion that uncertainty 
among the various parameters. Classical and Bayesian 
statistical analysis techniques, including the analysis 
of variance and differential sensitivity analysis, can 
be pursued to assess the global infl uence of an input 
parameter on an output variable by sampling from 
each input parameter’s probability density function or 
from intervals of possible values. 

3.5 Multi-Physics Models

In the past decade, different approaches have been 
proposed to quantify the uncertainty for individual 
physical models or simulation codes (e.g. see, 
Glimm and Sharp, 1999; Hanson, 1999; Devolder 
et al., 2002; Bae et al., 2003; Hanson and Hemez, 
2003; Oberkampf et al., 2003; Millman et al., 2006; 
Witteveen and Bijl, 2006). For example, Hanson 
(1999) proposed a Bayesian probabilistic method for 
quantifying uncertainties in simulation predictions. 
Bae et al. (2003) used evidence theory to handle 
epistemic uncertainty about a structural system. 
Mathelin et al. (2004) and Witteveen and Bijl (2006) 
applied a polynomial chaos-based stochastic method 
for uncertainty propagation in numerical simulations. 
However, these existing approaches have not ac-
counted for the uncertainty quantifi cation in multiple 
modules of the system model, where the challenge 
is to combine data (available from different sources, 
in different formats) and model predictions regard-
ing different physical phenomena (e.g., diffusion, 
chemical reaction, and mechanical damage), thus 
using all available information to quantify the overall 
prediction uncertainty. Urbina and Mahadevan (2009) 
have recently proposed a Bayes network approach to 
uncertainty quantifi cation in multi-physics models.
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3.6 Model Error Quantifi cation

Model errors may relate to governing equations, 
boundary and initial condition assumptions, loading 
description, and approximations or errors in solution 
algorithms (e.g., truncation of higher order terms, 
fi nite element discretization, curve-fi tting models 
for material damage such as S-N curve). Overall 
model error may be quantifi ed by comparing model 
prediction and experimental observation, properly 
accounting for uncertainties in both. This overall er-
ror measure combines both model form and solution 
approximation errors, and so it needs to be considered 
in two parts. Numerical errors in the model predic-
tion can be quantifi ed fi rst, using sensitivity analy-
sis, uncertainty propagation analysis, discretization 
error quantifi cation, and truncation (residual) error 
quantifi cation. The measurement error in the input 
variables can be propagated to the prediction of the 
output. The error in the prediction of the output due 
to the measurement error in the input variables is ap-
proximated by using a fi rst-order sensitivity analysis 
(Rebba et al., 2006). Then the model form error can 
be quantifi ed based on all the above errors, following 
the approach illustrated for a heat transfer problem by 
Rebba et al. (2006).

3.6.1 Solution Approximation Error

Several components of prediction error, such as 
discretization error (denoted by εd) and uncertainty 
propagation analysis error (εs) can be considered. 
Several methods to quantify the discretization error in 
fi nite element analysis are available in the literature. 
However, most of these methods do not quantify the 
actual error; instead, they only quantify some indica-
tor measures to facilitate adaptive mesh refi nement. 
The Richardson extrapolation (RE) method comes 
closest to quantifying the actual discretization error 
(Richards, 1997). (In some applications, the model 
is run with different levels of resolution, until an ac-
ceptable level of accuracy is achieved; formal error 
quantifi cation may not be required.)

Errors in uncertainty propagation analysis (εs) are 
method-dependent, i.e. sampling error occurs in 
Monte Carlo methods, and truncation error occurs 
in response surface methods (either conventional or 
polynomial chaos-based). For example, sampling 
error could be assumed to be a Gaussian random 
variable with zero mean and variance given by 
σ2/N where N, is the number of Monte Carlo runs, 
and σ2 is the original variance of the model output 
(Rubinstein, 1981). The truncation error is simply the 
residual error in the response surface. 

Rebba et al. (2006) used the above concept to con-
struct a surrogate model for fi nite element discretiza-
tion error in structural analysis, using the stochastic 
response surface method. Gaussian process models 
may also be employed for this purpose. Both options 
are helpful in quantifying the solution approximation 
error.

3.6.2  Model Form Error

The overall prediction error is a combination of errors 
resulting from numerical solution approximations and 
model form selection. A simple way is to express the 
total observed error (difference between prediction 
and observation) as the sum of the following error 
sources:

εobs = εnum + εmodel – εexp  (10)

where:

εnum, εmodel, and εexp represent numerical solution error, model 
form error, and output measurement error, respectively. 

However solution approximation error results from 
multiple sources and is probably a nonlinear combi-
nation of various errors such as discretization er-
ror, round-off and truncation errors, and stochastic 
analysis errors. One option is to construct a regression 
model consisting of the individual error components 
(Rebba et al., 2006). 
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The residual of such a regression analysis will 
include the model form error (after subtracting the 
experimental error effects). By denoting εobs as the 
difference between the data and prediction, i.e., εobs = 
yexp - ypred, we can construct the following relation by 
considering a few sources of numerical solution error 
(Rebba et al., 2006):

εobs = f(εh, εd, εs) + εmodel – εexp (11)

where:

εh, εd, and εs represent output error due to input parameter 
measurement error, fi nite element discretization error, and 
uncertainty propagation analysis error, respectively, all of 
which contribute to numerical solution error. 

Rebba et al. (2006) illustrated the estimation of 
model form error using the above concept for a one-
dimensional heat conduction problem, assuming a 
linear form of Eq. (11). However, the function f(εh, 
εd, εs) is nonlinear, and may be approximated through 
a response surface with respect to the three error 
variables, using a polynomial chaos expansion. The 
quantity εmodel - εexp is simply the residual error of such 
a response surface. Thus the distribution of model er-
ror εmodel is quantifi ed by knowing the distributions of 
residual error and measurement error.

Note that the above approach to quantifying model 
form error is only within the context of model 
validation—where actual data is available from 
targeted validation experiments—and compared with 
corresponding model predictions. In the context of 
PA, however, the concern is with extrapolation in 
time and space, and no direct comparison is possible 
between prediction and observation (at the time when 
the PA is done). Quantifying the model errors during 
extrapolation is diffi cult, and a Bayesian methodology 
might need to be pursued within restrictive assump-
tions (e.g., no change in physics). The Bayesian ap-
proach is discussed in Section 4.

4.0 MODEL CALIBRATION, 

VALIDATION AND 

EXTRAPOLATION

After quantifying and propagating the physical vari-
ability, data uncertainty, and model error for indi-
vidual components of the overall system model, the 
probability of meeting performance requirements 
(and our confi dence in the model prediction) needs 
to be assessed based on extrapolating the model to 
fi eld conditions (which are uncertain as well), where 
sometimes very limited or no experimental data 
is available. Rigorous verifi cation, validation, and 
calibration methods are needed to establish credibility 
in the modeling and simulation. Both classical and 
Bayesian statistical methodologies have been success-
fully developed during recent years for single physics 
problems, and have the potential to be extended to 
multi-physics models of cementitious barrier systems. 
The methods should have the capability to consider 
multiple output quantities or a single model output at 
different spatial and temporal points. 

This section discusses methods for (1) calibration 
of model parameters, based on observation data; (2) 
validation assessment of the model, based on obser-
vation data; and (3) estimation of confi dence in the 
extrapolation of model prediction from laboratory 
conditions to fi eld conditions.

4.1  Model Calibration    

Two types of statistical techniques may be pursued 
for model calibration uncertainty, the least squares ap-
proach, and the Bayesian approach. The least squares 
approach estimates the values of the calibration 
parameters that minimize the discrepancy between 
model prediction and experimental observation. 
This approach can also be used to calibrate surrogate 
models or low-fi delity models, based on high-fi delity 
runs, by treating the high-fi delity results similar to 
experimental data.  
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The second approach is Bayesian calibration 
(Kennedy and O’Hagan, 2001). This approach is 
fl exible and allows different forms for the calibration 
factor, and it has been illustrated for a heat transfer 
example problem (McFarland and Mahadevan, 2007, 
McFarland, 2008). 

In the literature, several researchers have calibrated 
their models using experimental results, especially if 
the phenomenon being modeled is complicated and 
the model is based on simplifying assumptions. For 
example, Tixier and Mobasher (2003) calibrated two 
parameters (reaction rate constant and fraction of 
porosity available for solid product deposition), and 
Krajcinovic et al. (1992) calibrated one parameter (re-
action rate constant), while modeling the degradation 
of concrete structures under sulfate attack.

4.2  Model Validation

Model validation involves comparing prediction with 
observation data (either historical or experimental) 
when both have uncertainty. Since there is uncertainty 
in both model prediction and experimental observa-
tion, it is necessary to pursue rigorous statistical tech-
niques to perform model validation assessment rather 
than simple graphical comparisons, provided data 
is even available for such comparisons. Statistical 
hypothesis testing is one approach to quantitative 
model validation under uncertainty, and both classic 
and Bayesian statistics have been explored. Classical 
hypothesis testing is a well-developed statistical 
method for accepting or rejecting a model based on 
an error statistic (see e.g., Trucano et al., 2001; Hills 
and Trucano, 2002; Paez and Urbina, 2002; Hills 
and Leslie, 2003; Rutherford and Dowding, 2003; 
Dowding et al., 2004; Chen et al., 2004; Oberkampf 
and Barone, 2006). Validation metrics have been in-
vestigated in recent years based on Bayesian hypothe-
sis testing (Zhang and Mahadevan, 2003; Mahadevan 
and Rebba, 2005; Rebba and Mahadevan, 2006), 
reliability-based methods (Rebba and Mahadevan, 
2008), and risk-based decision analysis (Jiang and 
Mahadevan, 2007 & 2008). 

In Bayesian hypothesis testing, prior probabilities 
were assigned for the null and alternative hypoth-
eses; P(H0 ) and P(Ha ) respectively, such that P(H0 ) 
+ P(Ha) = 1. Here H0 : model error < allowable limit, 
and Ha: model error > allowable limit. When data D 
is obtained, the probabilities are updated as P(H0 | D) 
and P(Ha | D) using the Bayes theorem. Then a Bayes 
factor (Jeffreys, 1961) B is defi ned as the ratio of like-
lihoods of observing D under H0 and Ha; i.e., the fi rst 
term in the square brackets on the right hand side of

(12a)0 0 0( | ) ( | ) ( )

( | ) ( | ) ( )a a a

P H D P D H P H

P H D P D H P H

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 

       
If B > 1, the data gives more support to H0 than Ha. 
Also the confi dence in H0, based on the data, comes 
from the posterior null probability P(H0 | D), which 
can be rearranged from Eq. (12a) as

0

0 0

( )

( ) 1 ( )

P H B

P H B P H+ −
 
Typically, in the absence of prior knowledge, equal 
probabilities may be assigned to each hypothesis and 
thus P(H0) = P(Ha) = 0.5. The posterior null probabil-
ity can then be further simplifi ed to B/(B+1). Thus a 
B value of 1.0 represents 50% confi dence in the null 
hypothesis being true.

The Bayesian hypothesis testing is also able to ac-
count for uncertainty in the distribution parameters, as 
mentioned in Section 2.2. For such problems, the val-
idation metric (Bayes factor) itself becomes a random 
variable. In that case, the probability of the Bayes 
factor exceeding a specifi ed value can be used as the 
decision criterion for model acceptance/rejection. 

Notice that model validation only refers to the situ-
ation when controlled, target experiments are per-
formed to evaluate model prediction, and both the 
model runs and experiments are done under the same 
set of input and boundary conditions. The validation 
is done only by comparing the outputs of the model 
and the experiment. Once the model is calibrated, 

(12b)
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verifi ed and validated, it may be investigated for con-
fi dence in extrapolating to fi eld conditions different 
from laboratory conditions. This is discussed in the 
next section.

4.3  Confi dence Assessment in 

Extrapolation

The Bayesian approach can also be used for assessing 
the confi dence in extrapolating model prediction from 
laboratory conditions to fi eld conditions, from lower 
resolution to higher resolution analysis, and from 
the lower level to the higher level in system analy-
sis, through the construction of the Bayes network 
(Jensen and Jensen, 2001). Bayes networks are di-
rected acyclic graphical representations with nodes to 
represent the random variables and arcs to show the 
conditional dependencies among the nodes. Data in 
any one node can be used to update the statistics of all 
other nodes. This property makes the Bayes network 
a powerful tool to extrapolate model confi dence from 
laboratory conditions to fi eld conditions (Mahadevan 
and Rebba, 2005). After computing the posterior dis-
tribution of the output under fi eld conditions, through 
the Bayes network, the confi dence in the prediction 
can be calculated similar to Section 4.2, using the 
Bayes factor.

Markov Chain Monte Carlo (MCMC) simulation is 
used for numerical implementation of the Bayesian 

updating analysis. Several effi cient sampling tech-
niques are available for MCMC, such as Gibbs sam-
pling, the Metropolis algorithm, and the Metropolis-
Hastings algorithm (Gilks et al., 1996). 

Figure 5 shows an illustrative Bayes network for 
confi dence extrapolation. An ellipse represents a 
random variable and a rectangle represents observed 
data. A solid line arrow represents a conditional 
probability link, and a dashed line arrow represents 
the link of a variable to its observed data if available. 
The probability densities of the variables Ω, z, and y 
are updated using the validated data Y. The updated 
statistics of Ω, z, and y are then used to estimate the 
updated statistics of the decision variable d (i.e., as-
sessment metric). In addition, both model prediction 
and predictive experiments are related to input vari-
ables X via physical parameters Φ. Note that there is 
no observed data available for d; yet the confi dence in 
the prediction of d, can be calculated by making use 
of observed data in several other nodes and propaga-
tion of posterior statistics through the Bayes network. 

The Bayes network thus links the various simulation 
codes and corresponding experimental observations 
to facilitate two objectives: (1) uncertainty quantifi ca-
tion and propagation and (2) extrapolation of confi -
dence assessment from validation domain to applica-
tion domain.

 

z   

d   

   
y   

Z   

Y   

X      

  

Figure 5. Bayes Network
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5.0  PROBABILISTIC PERFORMANCE 

ASSESSMENT 

Several methods are available in the reliability 
methods literature to effi ciently perform probabilistic 
performance assessment, as fast alternatives to expen-
sive Monte Carlo simulation. Performance assessment 
can be conducted with respect to single or multiple 
requirements. Effi cient reliability analysis techniques 
that are based on fi rst-order or second-order approxi-
mations or adaptive importance sampling can be used 
for this purpose.  When multiple requirements are 
defi ned, computation of the overall probability of sat-
isfying multiple performance criteria requires integra-
tion over a multidimensional space defi ned by unions 
and intersections of individual events (of satisfaction 
or violation of individual criteria). 

An important observation here is that the same 
methods that are described here for reliability analysis 
can also be used to compute the cumulative distri-
bution function (CDF) of the output, which may be 
of more general interest with respect to uncertainty 
quantifi cation of model output. The term reliability 
analysis here refers only to computing the probability 
of exceeding or not meeting a single threshold value, 
which is a special case of constructing the entire CDF. 

This section will discuss methods for probabilistic 
performance assessment with respect to individual 
criteria (5.1) and multiple criteria (5.2).

5.1  Individual Criteria

Probabilistic performance assessment can be based 
on the concept of a limit state that defi nes the bound-
ary between success and failure for a system (Haldar 
and Mahadevan, 2000). The limit state function, g, 
is derived from a system performance criterion and 

formulated such that g < 0 indicates failure. If the 
input parameters in the system analysis are uncertain, 
so will be the predicted value of g. The probability 
of system failure, i.e. P(g < 0) may be obtained from 
the volume integral under the joint probability density 
function of the input random variables over the failure 
domain as

(13)n
g

nXf dxdxdxxxxfP 21
0

21   ),,,(

where:

Pf is the probability of failure, fX is the joint probability 
density of a random variable vector X with n elements; 
vector x represents a single realization of X. Note that the 
integral is taken over the failure domain, or where g ≤ 0, so 
Pf = P(g ≤0).

The basic Monte Carlo simulation method evaluates 
the above integral by drawing random samples from 
the distributions of the variables X, and by evaluating 
whether g ≤ 0 in each run. Then the failure probability 
is simply the number of samples with g ≤ 0 divided 
by the total number of samples. While this technique 
is very simple to implement, it is also very expensive 
for problems with low failure probability. 

The First Order Reliability Method (FORM) approxi-
mately estimates the failure probability as Pf = Φ(-β,) 
where β is the minimum distance from the origin to 
the limit state in the space of uncorrelated standard 
normal variables5, as shown in Figure 6 (Hasofer and 
Lind, 1974). The minimum distance point on the limit 
state is referred to as the most probable point (MPP), 
and β is referred to as the reliability index. Finding 
the MPP is an optimization problem:

(14)  Minimize , subject to g ( ) = 0

__________________________

5 In general, a set of random variables x may be non-normal and correlated, but these may be transformed to an uncorrelated 
standard normal space (i.e. the space of random normal variables with 0 mean and unit standard deviation) via a transformation 
T, i.e η = T(x).
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where:

η is the vector of random variables in the space of uncor-
related standard normal variables, and ||η|| denotes the norm 
of that vector. 

Several optimization techniques, such as Newton 
search (Rackwitz and Fiessler, 1978), and sequential 
quadratic programming (Schittkowski, 1983) can be 
used to fi nd the MPP. Second-order reliability meth-
ods (SORM) are also available for higher accuracy; 
these take into account the curvature of the limit state 
in the failure probability calculation (e.g., Breitung, 
1984; Tvedt, 1990). Compared to basic Monte Carlo 
simulation, FORM and SORM require many fewer 
iterations to converge to the MPP, and thus drastically 
reduce the computational expense.

5.2  Multiple Criteria

When a PA is conducted with respect to multiple 
requirements, the overall system-level probability of 

meeting the requirements is calculated through unions 
or intersections of individual failure probabilities.

In the case of unions (i.e., system fails if any one of 
the individual criteria is not met), the failure prob-
ability is

(15)
k

kSeriesF gPP }0)({, x

This system failure probability may be computed 
using either Monte Carlo simulation, or by extending 
the results of the fi rst-order approximation in Section 
5.1. Let B be the vector of reliability indices for each 
of the limit states, and the elements of the matrix R 
be the dot products of the corresponding α vectors 
(unit gradient vector of the limit state at the MPP in 
standard normal space) obtained from the FORM 
analysis for each limit state. Then the system failure 
probability in the above equation can be approxi-
mated as 1 – Φ(B, R), where Φ(B, R) is the standard 
normal multivariate CDF with correlation matrix R. 
Closed-form representations of Φ(B, R) exist for the 

Figure 6. First-order Reliability Method
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bivariate case (Dunnett and Sobel, 1954). If more 
than two limit states are considered, then one may 
elect to use bounding formulae (Ditlevsen, 1979), 
importance sampling methods (e.g., Mahadevan and 
Dey, 1998; Ambartzumian et al., 1998), multiple 
linearizations (Hohenbichler and Rackwitz, 1987), or 
a moment-based approximation (Pandey, 1998). For 
nonlinear limit states, the joint failure domain may be 
identifi ed through an iterative linearization procedure 
(Mahadevan and Shi, 2001).

Similar concepts can be applied when the system 
failure is defi ned through intersections of individual 
failures (i.e., system fails only if all the individual 
criteria are not met). In that case, the failure 
probability is

(16)
k

kParallelF gPP }0)({, x

Again, the failure probability of the parallel system 
can be calculated either by Monte Carlo simulation, 
or from the results of the FORM analysis of its com-
ponents as Φ (-B, R).  In case FORM-based estima-
tion is too approximate, Monte Carlo simulation can 
be used for higher accuracy, but with a large number 
of simulations. Effi cient sampling techniques such 
as importance sampling (Mahadevan and Dey, 1998) 
may be used to reduce the computational expense.

In some cases, overall system failure defi nition may 
not be a simple union or intersection of individual 
failures, but may need to be represented as combina-
tions of unions and intersections. In most cases, the 
system will not necessarily be in one of the two states 
(failed or safe), but in one of several levels of per-
formance or degradation. Accounting for evolution 
of system states through time considerably increases 
the computational effort. The effort increases further 
when iterative multi-physics analysis is necessary, as 
in the case of several simultaneously active degrada-
tion processes. One option is to use fi rst-order, second 
moment approximations to B and R (Mahadevan 
and Smith, 2006), to reduce the computational 
expense, but at the cost of accuracy. A trade-off 

between accuracy and computational expense may be 
necessary.

An important observation to note is that the prob-
ability calculations described in Sections 5.1 and 
5.2 are only with respect to physical variability, 
represented by the random variables X. The pres-
ence of data uncertainty and model errors makes the 
probability estimates themselves uncertain. Thus one 
can construct confi dence bounds on the CDF of the 
output, based on a nested two-loop analysis. In the 
outer loop, realizations of the variables representing 
information uncertainty (such as distribution pa-
rameters of the probability distributions) and model 
errors are generated, and for each such realization, 
the output CDF is constructed in the inner loop. The 
collection of the resulting multiple CDFs is then used 
to construct the confi dence bounds on the CDF. This 
nested implementation can become computationally 
demanding; in that case, a single loop implementa-
tion that simultaneously performs both outer loop and 
inner loop analyses may be pursued (McDonald et al., 
2009).

6.0 CONCLUSION

Uncertainty quantifi cation in performance assessment 
involves consideration of three sources of uncer-
tainty – inherent variability, information uncertainty, 
and model errors. This report described available 
methods to quantify the uncertainty in model-based 
prediction due to each of these sources, and addressed 
them in four stages – input characterization based on 
data; propagation of uncertainties and errors through 
the system model; model calibration, validation and 
extrapolation; and performance assessment. Flexible 
distribution families were discussed to handle sparse 
data and interval data. Autoregressive models were 
discussed to handle time dependence. Methods to 
quantify model errors resulting from both model form 
selection and solution approximation were discussed. 
Bayesian methods were discussed for model calibra-
tion, validation and extrapolation. An important issue 
is computational expense, when iterative analysis 
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between multiple codes is necessary. Uncertainty 
quantifi cation multiplies the computational effort 
of deterministic analysis by an order of magnitude. 
Therefore the use of surrogate models, and fi rst-order 
approximations of overall output uncertainty, were 
described to reduce the computational expense.

Many of the methods described in the report have 
been applied to mechanical systems that are small 
in size, or time-independent, and the uncertain-
ties considered were not very large. None of these 
simplifi cations is available in the case of long-term 
performance assessment of engineered barriers for 

radioactive waste containment, and real-world data to 
validate long-term model predictions is not available. 
Thus the extrapolations are based on laboratory data 
or limited term observations, and come with large 
uncertainty. Therefore the benefi t of uncertainty quan-
tifi cation is not so much in predicting failure probabil-
ity or similar measures, but in facilitating engineering 
decision making, such as comparing different design 
and analysis options, and allocating resources for 
uncertainty reduction through further data collection 
and/or model refi nement.
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